Только сейчас я вспомнил, что до этого он не разжимал его ни разу.
Пристально глядя на меня, он сказал:
— Можешь коснуться.
С некоторой опаской я дотронулся кончиками пальцев до его ладони.
Я почувствовал холод и увидел, как что-то сверкнуло. В то же мгновение его пальцы сомкнулись. Я ждал. Незнакомец продолжал, как если бы он говорил с ребенком:
— Это диск Одина. У него есть только обратная сторона. Подобного ему нет на всей земле. Пока я владею им, я король.
— Он из золота? — спросил я.
— Не знаю. Это диск Одина. И у него одна-единственная сторона»[5].
У трехмерного диска три стороны. Две из них имеют форму круга, третья — это полоса, их соединяющая, которую мы можем развернуть в виде прямоугольника.
Двумерные предметы не имеют толщины. Математическое творение Борхеса состоит в том, что он доказал, что у диска Одина нет толщины, так как у него нет одной из боковых сторон. Дровосек никак не может найти диск, потому что он, скорее всего, упал невидимой гранью вверх.
Улицы Доротеи
Отсылки к математике содержатся и во многих произведениях Итало Кальвино:
«Космикомические истории», «Раздвоенный виконт», «Незримые города». Так, его совершенно нематематический роман «Незримые города» содержит множество связей с различными математическими идеями. На страницах романа Марко Поло описывает города своей империи Кубла-хану. Каждый город носит женское имя, и мы выбрали в качестве примера фразу из описания города Доротея:
«О городе Доротее можно повествовать двояко: либо рассказывая о том, что над ее стенами вздымаются четыре башни, а к семи воротам ведут подъемные мосты, переброшенные через ров; четыре канала с водой зеленого цвета пересекают город и делят его на девять кварталов, в каждом из которых находится по триста домов и семьсот дымоходов…»[6]
При описании архитектурных элементов города Кальвино использует конкретные величины: четыре башни, семь ворот, четыре канала с водой зеленого цвета, девять кварталов, 300 домов и 700 дымоходов. Неизбежно возникает желание провести некоторые расчеты. Так, всего в Доротее 9·300 = 2700 домов и 9·700 = 6300 дымоходов, что означает, что во многих домах больше двух дымоходов.
Не будем сосредотачивать внимание на этих вычислениях, а обратимся к топологическому аспекту описания, которое гласит, что «четыре канала с водой зеленого цвета пересекают город и делят его на девять кварталов».
Допустим, что каналы имеют форму прямых линий. Существует множество способов разделить город на девять кварталов четырьмя каналами. Можно проложить каналы так, что город окажется разделенным на одиннадцать кварталов, как показано на следующих рисунках:
Возникает вопрос: каково максимальное число кварталов, на которые можно разделить город прямыми улицами или каналами? Иными словами, каково максимальное число областей, на которое можно разделить часть плоскости n отрезками?
Чтобы ответить на этот вопрос, обратим внимание, что одна улица делит город всего на два района, а максимальное число районов образуется тогда, когда новая прямолинейная улица пересекает все существующие районы:
При прокладке первой улицы образуется один новый район, при прокладке второй улицы — два, третьей — три и т. д. Таким образом, при прокладке n-й улицы образуется n новых районов. Следовательно,
Иными словами, максимальное число районов В(n) равно сумме n и числа районов, полученных на предыдущем этапе, В(n — 1):
При подобном расположении улиц город будет выглядеть примерно так:
Образующаяся кривая — так называемая эвольвента В(n) для n —> кривая — гипербола, которая описывается уравнением:
х2 + у2 + 2ху — 4у = 0.
Если же улицы необязательно должны быть прямыми, то максимально возможное число районов будет равно В(n) = 2n. На следующем рисунке изображен план города, который делится шестью улицами на 64 района:
Порядок среди хаоса: теорема
ВариньонаТеорема Вариньона — это знаменитая теорема планиметрии, описывающая удивительный феномен. В классификации Дьёрдя Пойа это задача на доказательство.
Эта теорема иллюстрирует два важных принципа: во-первых, доказательство, которое не объясняет явление, не является достаточным, во-вторых, цель творческого подхода в математике заключается в том, чтобы понять явление, а для этого необходимо всестороннее доказательство. Иными словами, иногда «доказать» не означает «объяснить».
Выберем четыре произвольные точки плоскости Р, Q, R, S и соединим их отрезками, образуя четырехугольник. Обозначим середины его сторон точками А, В, С, D. Соединим эти точки так, чтобы получился второй четырехугольник внутри первого. Замечаете ли вы нечто особенное?
Повторите построение для других исходных точек, и вы увидите то же самое.
Перед нами — необычная ситуация. Кажется, что геометрия не подчиняется здравому смыслу. Какую бы форму ни имел исходный четырехугольник, для него всегда будет выполняться утверждение:
четырехугольник, вершины которого совпадают с серединами сторон произвольного четырехугольника, является параллелограммом.
Мы обнаружили порядок среди хаоса. Первое, что нужно сделать в подобных ситуациях — постараться объяснить увиденное. Быть может, доказательство поможет нам найти такое объяснение, а может быть, и нет. Рассмотрим векторный и алгебраический подход к этой теореме. Нужно доказать, что точки А, В, С и D, которые являются серединами сторон произвольного четырехугольника PQRS, определяют параллелограмм. Иными словами, нужно доказать, что векторы АВ→ и DC→ равны, то есть их можно разложить на одинаковые составляющие. Пусть исходные точки имеют следующие координаты: P(p1, р2), Q(q1, q2), R(r1, r2) и S(s1, s2). Найдем координаты первого из рассматриваемых векторов и покажем, что они равны координатам второго вектора:
Теорема доказана. Объясняет ли это доказательство суть увиденного нами? Нет. Перед нами пример того, как логика доказывает, но не объясняет. В данном случае логика не объясняет, потому что из доказательства мы не можем понять, почему ситуация складывается именно так, а не иначе. Вернемся в начало доказательства и обратим внимание на часть исходной фигуры:
Возможно, в этом контексте она покажется вам знакомой. Проведем вспомогательную линию — единственно возможную для завершения рисунка:
Результат построения — треугольники APD и QPS. Так как точки А и D — середины сторон PQ и PS соответственно, то отрезок AD параллелен QS, а его длина в два раза меньше длины QS. Последнее утверждение известно как теорема о средней линии — она заслуживает отдельного упоминания, так как не столь очевидна, как может показаться.
Проведя аналогичные рассуждения для вершины R исходной фигуры, получим, что отрезок ВС параллелен QS. Так как AD и ВС параллельны QS, они параллельны между собой, а четырехугольников CD — параллелограмм.
Несомненно, только в геометрическом контексте теорема наполняется смыслом, а объяснить ситуацию помогает доказательство, в котором используется теорема Фалеса.
Однако, подобно творцам от математики, не следует останавливаться на этом.
Пауль Матуссек, которого мы цитировали в первой главе, говорил, что творческий ум работает постоянно. Так, прямым следствием этой теоремы является то, что стороны параллелограмма ABCD параллельны диагоналям четырехугольника PQRS. Можно задать и другие вопросы: что произойдет, если мы будем делить стороны исходного четырехугольника не пополам, а на три, четыре и более частей?
Здесь в игру вступают компьютерные программы для рисования и обработки геометрических фигур, которые позволяют наглядно представить ситуацию и могут навести на новые вопросы. Рисунки ниже были сделаны с помощью программы, позволяющей произвольно перемещать вершины исходного четырехугольника. При этом возникают весьма необычные четырехугольники и параллелограммы: