Мутации могут быть спонтанными или индуцированными. Спонтанные мутации происходят с постоянной скоростью и образуют «молекулярные генетические часы», которые постоянно отсчитывают время в биосфеpe. Скорость мутаций данного гена приблизительно постоянна, поэтому регистрируя число аминокислот, которыми различаются друг от друга два вида, мы можем судить о времени, прошедшем с тех пор, как они отделилась от общего предка. Именно этот род информации мы имели в виду в главе 1, когда отмечали, что эволюция предсказуема, поскольку не было ни одного случая, когда информация этого рода пришла бы в конфликт с информацией о последовательности видов. Молекулярные часы также дают количественное подкрепление кладистическим диаграммам поколений подобным фрагменту на рис. 1.2), добавляя к ним шкалу времени. Кроме того, мутации могут быть индуцированы вышедшими из-под контроля воздействиями окружающей среды, такими, как облучение ядерной и ультрафиолетовой радиацией, попадание в организм химикалий и окисление опасными кислородсодержащими веществами, такими, как свободные радикалы (молекулы кислорода с дополнительным электроном): такова плата за использование кислорода и борьбу за долголетие.
Хотя центральная догма утверждает, что поток информации течет от ДНК через РНК к белкам, мы отмечали, что существуют исключения. Ретровирусы состоят из молекулы РНК, имеющей одну нить, которая для воспроизведения себя обычно использует имеющую две нити молекулу ДНК своего хозяина. Вирус иммунодефицита человека (ВИЧ), вирус, вызывающий синдром приобретенного иммунного дефицита (СПИД), является ретровирусом: он атакует иммунную систему и открывает тело для неподконтрольных инфекций. Этот вирус выделили в 1983 г. Люк Монтанье в институте Пастера в Париже, Роберт Галло в Национальном институте рака в США и Джей Леви в университете Калифорнии в Сан-Франциско. Вирус ВИЧ прикрепляется к Т-лимфоцитам, белым кровяным тельцам определенного типа, которые содержат свою РНК и фермент, называемый обратной транскриптазой. Эти молекулы попадают в окрестность молекулы ДНК в хромосоме, и фермент синтезирует ДНК-версию вирусной РНК и копию этой вновь образованной ДНК. На этой стадии возникает версия вирусной РНК в виде ДНК из двух нитей. Эта ДНК встраивается в ДНК хозяина, а затем из новой ДНК с помощью репликаторного механизма клетки синтезируется вирусная иРНК. Теперь вирусная иРНК интерпретируется так, что производит белки, необходимые для построения большего количества вирусных частиц. Эти частицы потом отпочковываются от клетки, используя часть стенки клетки как свою защитную мембрану. Такой процесс уничтожает оболочку лимфоцита и неизбежно убивает его, уменьшая возможности организма сопротивляться атакам других инфекций. Считается, что ретровирусы также являются возбудителями различных видов рака, включая некоторые виды, обнаруживаемые у человека.
Рестриктивный фермент — это фермент, вырабатываемый разными видами бактерий, который способен опознавать частные последовательности нуклеотидных оснований в молекуле ДНК и перерезать ее в этом месте. Фрагменты ДНК, произведенные таким способом, могут соединяться вместе с ферментом, называемым лигазой. Кусочки ДНК, которые могут воспроизводиться независимо от ДНК клеток хозяина, в которых они выросли, называются векторами; они включают плазмиды, круглые молекулы ДНК, обнаруживаемые в бактериях. Молекулы векторов, которые имеют встроенные секции ДНК, называются рекомбинантами ДНК. Эти векторы производят множество копий частных кусочков ДНК, умножая исходный материал и продуцируя большое количество клонов ДНК. Поселенцы колонии, сформированной таким способом, могут быть желанным приобретением, как в производстве продукта генетической инженерии инсулина, или — как при генной терапии — могут быть возвращены в исходный организм.
Более современные методы изменения ДНК включают прямую технику микроинъекции, в которой генетический материал, содержащий новые гены, вводится в клетки реципиента посредством стеклянной иглы с тонким концом. Клетка после этого выглядит как своя собственная (или, по крайней мере, как чужая собственная) и создает механизм, с помощью которого безотказно снабжает генами ядра клеток хозяина и встраивает эти гены в них. Гены также можно встраивать, создавая поры в мембране клетки и предоставляя входящим генам возможность искать собственный путь внутрь. В химическом порообразовании клетки погружают в раствор специальных химикалий; в электропорообразовании клетки подвергают действию слабого электрического тока. Если вы полагаете, что эти техники слишком уж рафинированы, вы можете прибегнуть к биобаллистике, в которой маленькие осколки металла одевают в генетический материал и затем просто выстреливают в клетку. Тут мне вспоминается сцена в одном из фильмов про Индиану Джонса, где, после того как его оппонент продемонстрировал замечательно отработанные приемы традиционного фехтования, Джонс случайно выстрелил в него.
Раз уж мы заговорили о стрельбе, то еще одним важным следствием понимания структуры ДНК является ее использование в судопроизводстве в форме ДНК-профилирования, или, говоря менее формально ДНК-дактилоскопии. Настоящая дактилоскопия, снятие образцов узора на коже подушечек пальцев, была предложена как способ опознания подозреваемых в 1880 г. Генри Фаулдзом, шотландским врачом, работавшим в Токио. Вскоре после этого она была использована для снятия подозрений с невиновного и для опознания преступника в совершенной там ночной краже со взломом. Через сотню лет, после того как Алек Джеффрис в 1984 г. в университете в Лестере создал ДНК-дактилоскопию, опознание личности продвинулось от кончиков ее пальцев к каждой клетке ее тела. Нам следует усвоить две черты этой техники: одна — умножение микроскопических количеств ДНК, другая — реальная дактилоскопия. ДНК-профилирование является столь важной техникой в судопроизводстве, в установлении родственных связей и в эволюционных исследованиях, что оно претерпело чудовищно бурное развитие за последние двадцать лет, обрастая различными особенностями, для использования в различных обстоятельствах. Дадим краткое описание типичного подхода.
Кэри Муллис (р. 1944), изобретатель полимеразной цепной реакции (ПЦР), говорит, что эта идея пришла ему в голову в 1983 г. во время поездки при лунном свете в горах Калифорнии, где, должно быть, пролегает одна из приятнейших дорог к завоеванию Нобелевской премии. Полимераза, напомним, является ферментом, который помогает копировать нить ДНК, используя ее как шаблон; тот же фермент можно использовать в искусственной среде. Чтобы последнее стало возможным, фермент необходимо обильно снабжать нуклеотидными основаниями и двумя праймерами, представляющими собой короткие последовательности приблизительно из дюжины нуклеотидов; это позволяет реакции продолжаться. Сначала, при нагревании смеси, нити ДНК разделяются (ДНК «плавится»), затем раствор охлаждают, чтобы праймеры могли прикрепиться к соответствующим частям нитей ДНК — молекулы праймеров проталкиваются до тех пор, пока не найдут свое точное дополнение, а затем сцепляются с ним — и действовать как ограничители той части молекулы, которую надо скопировать. В конце температуру снова повышают до значения, при котором полимераза может эффективно функционировать, и на шаблоне растет комплементарная нить. Поскольку фермент должен выдерживать высокие температуры фазы плавления, он экстрагируется из бактерий, таких как Thermus oguaticus, которые живут в горячих источниках. Полный цикл занимает около трех минут. Затем его повторяют снова и снова, от тридцати до сорока раз, постепенно производя десять миллионов копий лоскутков исходной ДНК, лежащих между маркерами праймеров (рис. 2.16). Это означает, что даже из микроскопического образца ДНК нужная область может быть увеличена и сделана пригодной для экспертизы.
Рис. 2.16. Последовательность диаграмм, показывающих, как действует полимеразная цепная реакция (ПЦР). Вверху слева мы видим представление двойной спирали ДНК-мишени. На первом шагу (слева ниже) нити разделяются, и к каждой из них прикрепляются праймеры. Ферменты выращивают комплементарную нить по шаблону, предоставляемому каждой из нитей. Сдвоенные нити плавятся снова, и праймеры прикрепляются к каждой из них. Далее ферменты, как и раньше, строят комплементарные версии нитей, но теперь в смеси появляются копии ДНК, лежащие между двумя праймерами и несущие последовательность, повторяющую мишень, и после ряда повторений они начинают доминировать.