Коль скоро мы определили число i как квадратный корень из –1, то должно существовать число 2i, так как оно равно сумме i плюс i (а также квадратному корню из –4). Аналогично, должно существовать и число i/2, так как оно получается при делении i на 2. Выполняя простые операции, можно получить мнимый эквивалент каждого так называемого действительного числа. Существуют мнимые натуральные числа, мнимые отрицательные числа, мнимые дроби и мнимые иррациональные числа. Проблема, которая теперь возникает, заключается в том, что у всех этих мнимых чисел нет своего естественного места на действительной числовой оси. Математики разрешили возникший кризис, введя еще одну — мнимую — ось, перпендикулярную действительной оси и пересекающую ее в нуле, как показано на рис. 12. Числа перестали занимать одномерную прямую, а расположились на двумерной плоскости. Чисто мнимые или чисто действительные числа заполняют соответствующие оси — действительную и мнимую, а комбинации действительного и мнимого чисел (например, 1+2i) называются комплексными числами и обитают на так называемой числовой плоскости.
Рис. 12. Введение оси для мнимых чисел превращает числовую ось в числовую плоскость. Каждой комбинации действительного и мнимого чисел соответствует определенная точка на числовой плоскости
Особенно замечательно, что в комплексных числах решается любое алгебраическое уравнение. Например, чтобы вычислить √3+4i, математикам не нужно изобретать числа нового типа: оказывается, что ответ равен 2+i, т. е. другому комплексному числу. Иначе говоря, создается впечатление, что мнимые числа — последний элемент, необходимый для завершения математики.
Хотя квадратные корни из отрицательных чисел получили название мнимых чисел, математики считают число i ничуть не более абстрактным, чем отрицательное или любое натуральное число. Кроме того, физики обнаружили, что мнимые числа дают лучший язык для описания некоторых явлений, протекающих в реальном мире. С помощью нехитрых манипуляций мнимые числа оказываются идеальным средством анализа естественного колебательного движения объектов, например, маятника. Такое колебательное движение, называемое на техническом языке синусоидальным колебанием, широко распространено в природе, и поэтому мнимые числа стали неотъемлемой составной частью многих физических расчетов. В наше время инженеры-электрики приспособили i к анализу переменных токов, а физики-теоретики вычисляют различные квантовомеханические эффекты с помощью осциллирующих волновых функций, суммируя степени мнимых чисел.
В чистой математике мнимые числа используют для решения задач, ранее казавшихся неразрешимыми. Мнимые числа буквально добавили новое измерение к математике, и Эйлер надеялся, что ему удастся использовать эту дополнительную степень свободы в поисках доказательства Великой теоремы Ферма.
И до Эйлера некоторые математики уже пытались приспособить метод бесконечного спуска Ферма для решения уравнения Ферма в целых числах при n, отличных от 4, но всякий раз попытка распространить метод приводила к каким-нибудь проблемам в логике. И только Эйлер показал, что, используя число i, можно заткнуть все дыры в доказательстве и заставить метод бесконечного спуска работать при n=3.
Это было грандиозное достижение, но повторить успех при других значениях n Эйлеру не удалось. К сожалению, все попытки применить те же рассуждения к другим значениям вплоть до бесконечности закончились провалом. И математик, решивший больше задач, чем кто-либо другой за всю историю, был вынужден признать поражение — Великая теорема Ферма оставалась неприступной. Единственным утешением для Эйлера было то, что он осуществил первый серьезный прорыв в «круговой обороне» труднейшей математической проблемы в мире.
Не обескураженный постигшей его неудачей, Эйлер продолжал создавать блестящие математические методы до конца своих дней, несмотря на то, что последние годы его жизни были омрачены полной слепотой. Эйлер начал слепнуть в 1735 году, когда Академия в Париже предложила премию за решение одной астрономической проблемы. Эта проблема была столь трудна, что математическое сообщество обратилось к Академии с просьбой дать на решение несколько месяцев, но Эйлеру отсрочка не была нужна. Задача настолько захватила его, что он, работая дни и ночи напролет, решил ее за трое суток и заслуженно получил премию. Но напряженнейшая работа в плохих условиях стоила Эйлеру, которому тогда едва исполнилось двадцать лет, потери одного глаза. Этот физический недостаток отчетливо виден на многих портретах Эйлера, в том числе и на том, который помещен в начале этой главы.
По совету Жана Лерона д'Аламбера Эйлера при дворе Фридриха Великого сменил Жозеф Луи Лагранж, по поводу чего прусский король позже заметил: «Вашим заботам и рекомендациям я обязан тому, что заменил математика, слепого на один глаз, математиком, зрячим на оба глаза, что особенно придется по вкусу членам моей Академии по разряду анатомии». По возвращении Эйлера в Россию Екатерина Великая приветствовала своего «математического циклопа».
Потеря одного глаза имела небольшой «плюс»: как заметил Эйлер, «у меня будет меньше возможностей отвлекаться». Сорок лет спустя, когда Эйлеру было уже шестьдесят, его состояние значительно ухудшилось: катаракта на здоровом глазе означала, что он обречен на полную слепоту. Эйлер решил не поддаваться болезни и начал тренироваться — зажмурив глаз, который видел все хуже и хуже, стал учиться писать вслепую, чтобы овладеть этим искусством прежде, чем свет навсегда померкнет для него. Через несколько недель Эйлер ослеп. Тренировка оказалась весьма кстати, но через несколько месяцев почерк Эйлера стал неразборчивым, и его сын Альберт взял на себя роль личного секретаря отца.
На протяжении следующих семнадцати лет Эйлер продолжал активно заниматься математикой. Более того, его производительность возросла, как никогда прежде. Огромный интеллект Эйлера позволял ему манипулировать понятиями, не фиксируя их на бумаге, а феноменальная память служила полноценной заменой библиотеки. Коллеги даже высказывали предположение, что наступление слепоты расширило горизонты его воображения. Следует заметить, что вычисления положений Луны были выполнены Эйлером уже после наступления слепоты. Для европейских монархов составленные Эйлером таблицы были самым ценным математическим достижением, и решением проблемы, над которой трудились величайшие математики Европы, включая Ньютона.
В 1776 году Эйлеру была сделана операция по удалению катаракты, и на несколько дней зрение, казалось, восстановилось. Но в больной глаз была занесена инфекция, и Эйлер снова погрузился во тьму. Не теряя бодрости духа, он продолжал работать до 18 сентября 1783 года, когда произошел роковой апоплексический удар. По словам математика и философа маркиза де Кондорсэ, «Эйлер перестал жить и вычислять».
И через сто лет после кончины Эйлера существовали доказательства только в двух частных случаях Великой теоремы Ферма. Сам Ферма дал математикам фору, оставив им доказательство того, что уравнение
x4 + y4 = z4
не имеет решений в целых числах. Эйлер используя предложенный Ферма метод бесконечного спуска, доказал, что уравнение
x3 + y3 = z3
также не имеет решений в целых числах. После Эйлера все еще оставалось необходимо доказать, что бесконечный набор уравнений
x5 + y5 = z5,
x6 + y6 = z6,
x7 + y7 = z7,
x8 + y8 = z8,
x9 + y9 = z9,
. . . . . .
не имеет решений в целых числах. И хотя математики продвигались поразительно медленно, ситуация складывалась далеко не так плохо, как могло бы показаться на первый взгляд. Оказалось, что доказательство для случая n=4 остается в силе при n=8, 12, 16, 20…. Дело в том, что любое число, представимое в виде 8-й (а также 12-й, 16-й, 20-й…) степени некоторого числа, представимо и в виде 4-й степени какого-то другого целого числа. Например, число 256 равно 28, но оно равно и 44. Следовательно, любое доказательство, которое «работает» для 4-й степени, остается в силе для 8-й и любой другой степени, кратной 4. На основе того же принципа можно утверждать, что эйлеровское доказательство для n=3 автоматически переносится на n=6, 9, 12, 15…. Тем самым Великая теорема Ферма утратила свой неприступный вид и оказалась верной сразу для многих чисел n.