MyBooks.club
Все категории

Генри Дьюдени - Кентерберийские головоломки

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Генри Дьюдени - Кентерберийские головоломки. Жанр: Математика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Кентерберийские головоломки
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
266
Читать онлайн
Генри Дьюдени - Кентерберийские головоломки

Генри Дьюдени - Кентерберийские головоломки краткое содержание

Генри Дьюдени - Кентерберийские головоломки - описание и краткое содержание, автор Генри Дьюдени, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Сборник принадлежит перу одного из основоположников занимательной математики Генри Э. Дьюдени. Кроме беллетризованных задач на темы «Кентерберийских рассказов» Д. Чосера, в него вошло более 150 других логических, арифметических, геометрических, алгебраических задач и головоломок.Книга доставит удовольствие всем любителям занимательной математики.

Кентерберийские головоломки читать онлайн бесплатно

Кентерберийские головоломки - читать книгу онлайн бесплатно, автор Генри Дьюдени

– Ничтожные варвары, именующие себя ламами! Знаете ли вы меру своей дерзости? Вы осмелились претендовать на то, что в чем-то превосходите моего предшественника?! Возьмите эту доску и прежде, чем рассвет займется над камерой пыток, разрежьте ее на 4 равные части одинаковой формы, чтобы каждая содержала по шестнадцать целых клеток и по одному драгоценному камню! Если вы в сем деле не преуспеете, то, к вашей же печали, мы придумаем другое испытание. Идите!

Четверо лам преуспели в этом на первый взгляд безнадежном деле. Можете ли вы показать, как следует разрезать доску на 4 равные части одинаковой формы, содержащие по драгоценному камню, если разрезы проводить исключительно по границам клеток?


119. Окно аббата. Однажды аббат монастыря святого Эдмондсбери от излишней для его головы «набожности» так занемог, что не в силах был подняться с постели. Он лежал без сна, и голова его беспокойно металась по подушке, отчего внимательные монахи заключили, что их настоятеля беспокоит какая-то навязчивая мысль. Однако никто не решился спросить его, в чем дело, ибо аббат отличался суровым характером и не потерпел бы никаких расспросов. Внезапно он позвал отца Джона, и вскоре этот почтенный монах предстал перед ложем.

– Отец Джон, – сказал аббат, – знаешь ли ты, что я пришел в этот грешный мир в сочельник?

Монах кивнул утвердительно.

– А не говорил ли я тебе, что, родившись в сочельник, я не люблю ничего нечетного?[22] Смотри! – Аббат указал на большое окно трапезной, которое вы видите на рисунке. Монах взглянул на него и задумался.



– Заметил ли ты, что шестьдесят четыре просвета расположены так, что их число вдоль вертикалей и горизонталей четно; но вдоль всех диагоналей, за исключением четырнадцати, их число нечетно? Почему так происходит?

– По правде говоря, отец мой, это лежит в самой природе вещей и не может быть изменено.

– Нет, это следует изменить. Я повелеваю тебе сегодня же закрыть некоторые из просветов так, чтобы число просветов вдоль каждой прямой оказалось четным. Смотри, чтобы это было сделано без промедления, иначе погреба будут заперты на целый месяц и другие не менее тяжкие кары падут на твою голову.

Отец Джон, ломая голову, едва не лишился разума, но, посоветовавшись наконец с одним монахом, искушенным в тайных науках, сумел все же удовлетворить прихоть аббата. Какие просветы были заделаны, чтобы число оставшихся просветов вдоль каждой вертикали, горизонтали и диагонали оказалось четным, а число заделанных просветов при этом было минимальным?


120. Китайская шахматная доска. На какое максимальное число различных частей можно разрезать шахматную доску (все разрезы проводятся только вдоль линий) так, чтобы при этом никакие две части не оказались полностью одинаковыми? Помните, что части, отличающиеся расположением черных и белых клеток, считаются различными. Так, единственная белая клетка отличается от единственной черной клетки; ряд из трех клеток, две из которых белые, а одна черная, отличается от такого же ряда с двумя черными и одной белой клетками и т. д. Если две части нельзя расположить на столе так, чтобы они выглядели совершенно одинаковыми, то они считаются различными; а поскольку на обратной стороне доски рисунок не нанесен, то части нельзя переворачивать другой стороной кверху.


121. Буквы из шахматных клеток. Однажды я развлекался тем, что пытался разрезать обыкновенную шахматную доску на буквы, из которых удалось бы сложить какую-нибудь фразу. На рисунке видно, как мне удалось составить предложение CUT ТНУ LIFE[23] с точками между словами. Однако идеальное предложение должно было бы содержать, конечно, лишь одну точку, но мне не удалось его получить.



Эта фраза представляет собой призыв к преступнику покончить с той полной зла жизнью, которую он ведет. Сможете ли вы опять сложить из этих букв правильную шахматную доску?

Статические шахматные головоломки

122. Восемь ладей. На рисунке а видно, что каждая клеточка доски либо занята, либо находится под угрозой нападения одной из ладей и что каждая ладья «защищена» (если бы они были попеременно белыми и черными, то мы бы сказали «атакована») другой ладьей.



Поместив 8 ладей на любую горизонталь или вертикаль, мы получим тот же эффект. На рисунке б каждая клетка снова либо занята, либо находится под угрозой, но в этом случае каждая ладья не защищена. Теперь скажите, сколькими различными способами 8 ладей можно расположить на шахматной доске так, чтобы при этом каждая клетка оказалась либо занятой, либо под угрозой нападения, но чтобы ни одна ладья не была защищена другой ладьей? Я не хочу здесь вдаваться в вопросы, касающиеся отражений и поворотов, так что если вы расположите ладьи на другой диагонали, то это будет считаться другим расположением, аналогичным образом обстоит дело и с расположениями, получающимися из некоторого расположения с помощью поворотов.


123. Четыре льва. Эта головоломка состоит в том, чтобы выяснить, сколькими различными способами можно расположить четырех львов так, чтобы при этом на любой горизонтали и вертикали находилось не более чем по одному льву. Отражения и повороты не считаются различными.



Так, в приведенном на рисунке примере расположение львов вдоль второй диагонали мы не будем считать отличным от исходного. Действительно, если вы поднесете второе расположение к зеркалу или повернете его на четверть полного оборота, то получите первое расположение. Это простая маленькая головоломка, но она требует некоторого внимания.


124. Незащищенные слоны. Расположите наименьшее число слонов на обычной шахматной доске таким образом, чтобы каждая клетка оказалась либо занятой, либо под угрозой нападения. Можно заметить, что ладья в этом отношении более могуча, чем слон, ибо, где бы она ни располагалась, под ее угрозой всегда находятся 14 клеток, тогда как под угрозой слона может находится 7, 9, 11 или 13 клеток в зависимости от того, на какой диагонали он стоит, Здесь не лишне напомнить, что, говоря о диагоналях шахматной доски, мы не ограничиваемся двумя большими диагоналями, соединяющими противоположные ее углы, а имеем в виду и более короткие прямые, параллельные этим большим диагоналям. Читателю стоит хорошенько это запомнить, дабы избежать недоразумений в будущем.


125. Защищенные слоны. Сколько теперь потребуется слонов, чтобы каждая клетка оказалась либо занятой, либо под угрозой, а каждый слон находился под защитой другого слона?


126. Собрание слонов. Наибольшее число слонов, которых можно поместить на одной шахматной доске так, чтобы ни один слон не атаковал другого, равно 14. На рисунке показано простейшее расположение такого типа.



Фактически на квадратной доске любого размера число слонов, которых можно расположить так, чтобы они не атаковали друг друга, всегда на 2 меньше удвоенного количества клеток, расположенных вдоль одной из ее сторон. Интересная головоломка состоит в том, чтобы определить, сколькими различными способами 14 слонов можно расположить на обычной шахматной доске так, чтобы они не атаковали друг друга. Я приведу крайне простое правило, позволяющее определить число таких способов для доски любого размера.


127. Восемь ферзей. Ферзь на шахматной доске – куда более сильная фигура, чем слон. Если вы поместите ферзя на один из четырех квадратов в центре доски, то под его угрозой окажется не менее чем 27 других клеток, а если вы попытаетесь запрятать его в угол, то все равно он будет атаковать 21 клетку. Восемь ферзей можно расположить на доске таким образом, чтобы ни один из них не атаковал другого.



Существует старая головоломка (впервые предложенная Науком в 1850 г.), которая состоит в том, чтобы определить число различных способов, какими это можно сделать. Один такой способ приведен на рисунке, а всего число существенно различных способов равно 12. Если же мы будем считать повороты и отражения различными способами, то из этих 12 образуется 92 способа. Расположение, приведенное на рисунке, обладает определенной симметрией. Если вы перевернете страницу вверх ногами, то получите то же самое расположение, однако если вы повернете доску так, чтобы внизу оказалась одна из боковых сторон, то получите расположение, отличное от исходного. Если вы зеркально отразите эти 2 расположения, то получите еще 2 способа. Далее, все другие 11 расположений не симметричны, и, следовательно, из каждого из них с помощью таких поворотов и отражений получается по 8 способов. Таким образом, становится понятно, почему 12 существенно различных решений порождают 92 расположения, как я уже говорил, а не 96, как получилось бы, если бы все 12 решений оказались несимметричными. Следует ясно представлять себе природу поворотов и отражений, когда имеешь дело с головоломками на шахматной доске.


Генри Дьюдени читать все книги автора по порядку

Генри Дьюдени - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Кентерберийские головоломки отзывы

Отзывы читателей о книге Кентерберийские головоломки, автор: Генри Дьюдени. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.