MyBooks.club
Все категории

Иосиф Розенталь - Геометрия, динамика, вселенная

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Иосиф Розенталь - Геометрия, динамика, вселенная. Жанр: Математика издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Геометрия, динамика, вселенная
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
13 февраль 2019
Количество просмотров:
154
Читать онлайн
Иосиф Розенталь - Геометрия, динамика, вселенная

Иосиф Розенталь - Геометрия, динамика, вселенная краткое содержание

Иосиф Розенталь - Геометрия, динамика, вселенная - описание и краткое содержание, автор Иосиф Розенталь, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Книга посвящена проблемам современной физики и космологии. Рассматривается современная геометрия и ее связь с динамикой, новейшие модели эволюции Метагалактики, обсуждается проблема структуры физического пространства и его размерность. Все эти проблемы теоретической физики и космологии автор излагает для читателей, знакомых с общей физикой в объеме курсов, читаемых в вузах. Книга рассчитана на читателей, интересующихся современными достижениями космологии и физики.

Геометрия, динамика, вселенная читать онлайн бесплатно

Геометрия, динамика, вселенная - читать книгу онлайн бесплатно, автор Иосиф Розенталь

Выяснилось также, что физический вакуум может соответствовать не только полному отсутствию реальных частиц, но и понятию минимальной энергии системы.

В случае дираковского вакуума оба определения совпадают. Однако для некоторых бозонных полей оба определения могут быть не вполне эквивалентны. частицы данного сорта могут существовать как реальные объекты, однако система в целом включает и вакуумное состояние. Необходимо лишь, чтобы энергия системы как функция поля была минимальной.

Вероятно, наиболее впечатляющим доказательством существования вакуумной материи является беспрецедентное по точности предсказание взаимодействия реальных частиц с вакуумом. С первого взгляда может показаться, что автор запутался в дефинициях. Как реальная частица может взаимодействовать с ненаблюдаемыми частицами? Оказывается, может.

В рамках классических представлений сомнение в подобном взаимодействии вполне правомочно. Однако в квантовой теории поля существуют виртуальные частицы, время жизни которых определяется принципом неопределенности: t ~ HP / m*c**2, где m — масса вакуумной частицы. Например, для электрона t≈10**-21 с. Это время слишком мало, чтобы частицы (В данном случае электроны с отрицательной энергией) можно было наблюдать непосредственно. Однако этого времени вполне достаточно, чтобы наблюдать взаимодействие реальных частиц с коллективом вакуумных частиц. Это взаимодействие проявляется в изменении характеристик реальных частиц. Так, аномальный магнитный момент электрона (отклонение магнитного момента электрона от боровского магнетона), обязанный взаимодействию электрона с вакуумом и вычисленный по правилам квантовой электродинамики, совпадает с наблюдаемой величиной с точностью до одиннадцатого знака!

В результате взаимодействия электрона, находящегося в атоме водорода, с вакуумом возникает спектральная линия. Ее расчетное значение v| = 1057.91 ± 0.01 МГц,

t экспериментальное — v| = 1057.90 ± 0.06 МГц.

e

Таким образом, физический вакуум — это новый тип реальной существующей материи.

Возникает вопрос: можно ли наглядно интерпретировать свойства вакуума, не прибегая к понятию частиц с отрицательной энергией, которые не наблюдаются непосредственно в природе? По-видимому, для фермионов эта трудность остается. Однако для бозонов можно моделировать вакуум, используя известные представления, заимствованные из квантовой физики макроскопических тел.[18]

Бозоны, находясь в основном состоянии, обладают следующим уникальным свойством. С увеличением числа даже электронейтральных частиц и в пренебрежении гравитационными силами увеличивается их взаимное притяжение. Иначе говоря, совокупность таких бозонов стремится увеличить свою концентрацию. Это свойство обусловлено квантовомеханическими особенностями бозонов, а сам ансамбль таких частиц называется бозе-конденсатом.

Подобные системы нередко реализуются в макроскопической физике. Например, сверхпроводимость при низких температурах обусловлена свойствами бозе-конденсата. В бозе-конденсате увеличение концентрации частиц в основном состоянии определяется не увеличением сил притяжения, а уменьшением эффективного давления в системе. Давление уменьшается, следовательно, уменьшается препятствие к увеличению концентрации. Такая парадоксальная ситуация приводит иногда к весьма непривычному уравнению состояния

p = — ε. (63)

Обычно в уравнениях состояния, связывающих давление p и плотность энергии вещества ε, обе величины имеют одинаковый знак. Отметим, что полная плотность энергии материи остается неизменной, если выполняется уравнение состояния (63).

Эти свойства вакуума (постоянная плотность и справедливость уравнения (63)) в рамках ОТО аналогичны описываемым взятом с соответствующим знаком LAMDA-членом в уравнении Эйнштейна.

Далее возникает вопрос, существуют ли частицы, которые четко реализуют основные свойства бозе-конденсата, и в частности уравнение состояния (63). Оказывается, что гипотетические частицы Хиггса, являющиеся неотъемлемым элементом объединенной теории электрослабого взаимодействия, хорошо моделируют описанные свойства бозе-конденсата.

Спин частиц Хиггса равен нулю, и именно они обеспечивают наличие массы у переносчиков слабого

+ 0 взаимодействия: W|-, Z|-бозонов. Частицы Хиггса пока не были обнаружены на ускорителях из-за их большой массы и (или) слабости взаимодействия с другими частицами. Отметим, что в отличие от частиц с отрицательной энергией нет никаких принципиальных трудностей в наблюдениях частиц Хиггса. Полагают, что их массы превышают 100 ГэВ и поэтому на современных ускорителях их нельзя воспроизвести. На рис. 7 (кривая 1) представлена типичная зависимость потенциала взаимодействия хиггсовских частиц V(FFI) от значения описывающего их поля. На этой кривой легко заметить два минимума: один соответствует значению поля FI=0, второй соответствует значению FI=FI |≠0. Важно отметить, что

0 V(0)>V(FI |). Следовательно, в принципе система из состояния

0 FI=0 может спонтанно «скатиться» в состояние FI=FI |,

0 обратный же процесс без внешнего воздействия невозможен. Значение FI=FI | соответствует абсолютно устойчивому

0 состоянию вакуума скалярных частиц Хиггса.

≡=РИС. 7

Д.А.Киржниц и А.Д.Линде показали, что зависимость V(FI) существенно зависит от температуры конденсата T|. При Т>T|

c c минимум при FI=FI | исчезает (кривая 2) и остается один

0 минимум — при FI=0. Кривая V(FI) становится симметричной относительно прямой FI=0, перпендикулярной оси абсцисс. На кривой 1, соответствующей T — > 0, такая симметрия отсутствует. По современным воззрениям, возникновение асимметрии скалярного вакуума приводит к появление массы у частиц.

Любопытная ситуация возникает при изменении (например, уменьшении) температуры T. При высоких температурах реализуется симметричная зависимость 2; по мере уменьшения температуры при некотором критическом значении T=T|

c появляется второй минимум, соответствующий кривой 1. Симметрия системы (вакуума) изменилась, т. е. в ней произошел фазовый переход.

Любопытная ситуация возникает при изменении (например, уменьшении) температуры T. При высоких температурах реализуется симметричная зависимость 2.; по мере уменьшения температуры при некотором критическом значении T=T| появляется второй минимум, соответствующий кривой 1. Симметрия системы (вакуума) изменилась, т. е. в ней произошел фазовый переход.

В заключение нужно отметить, что ситуация с пониманием физического вакуума далека от завершения. Введенная Дираком бесконечность энергии вакуума полностью не устранена до сих пор. Большие надежды возлагают на так называемые суперсимметричные теории. в которых энергии бозонных и фермионных вакуумов взаимно компенсируют друг друга так, что суммарная энергия вакуума обращается в нуль. Однако эта весьма красивая и привлекательная идея наталкивается на одну трудность. В наблюдаемом нами мире симметрия между фермионами и бозонами отсутствует. Не обнаружено ни малейшего соответствия между наблюдаемыми совокупностями бозонов и фермионов. Обычно говорят о нарушении суперсимметрии при очень больших энергиях. К сожалению, в настоящее время отсутствует убедительный критерий, определяющий масштаб нарушения суперсимметрии.

6. РАЗДУВАЮЩАЯСЯ ВСЕЛЕННАЯ

И РЕШЕНИЕ ПРОБЛЕМ

ФРИДМАНОВСКОЙ КОСМОЛОГИИ

Существование новой формы материи — вакуума открывает широкие возможности для анализа начальных стадий эволюции Метагалактики. Основная идея базируется на реализации в природе космологического решения де Ситтера (62), которое ранее отвергалось из-за характерного для него уравнения состояния (63). Это уравнение состояния не встречается в привычных формах материи (вещество, излучение), но свойственно физическому вакууму.

Решение (62) обладает несколькими особенностями: 1) оно несингулярно: при любом t (кроме t = — ∞) масштабный фактор не обращается в нуль; 2) масштабный фактор возрастает со временем очень быстро; 3) из-за необычного уравнения состояния (63) экспоненциальное расширение неустойчиво: оно не может продолжаться неограниченно долго. Полезно отметить, что быстрое расширение и уравнение состояния (63) взаимосвязаны. Соотношение (63) означает существование отрицательного давления, т. е. сил, способствующих разбеганию частей системы, в данном случае частей Вселенной. Через сравнительно малый промежуток времени экспоненциальное расширение прекращается, в вакууме происходит перестройка — фазовый переход, в процессе которого энергия вакуума переходит в обычное вещество и кинетическую энергию расширения Метагалактики (или, точнее, метагалактик).

Все эти особенности деситтеровского решения, видимо, послужили причиной несколько неожиданных поворотов в истории космологии. На ее заре решение де Ситтера казалось весьма привлекательным вследствие его совершенной симметрии. В данной модели объем, занимаемый «Вселенной», изотропен в четырехмерном пространстве Минковского в отличие от фридмановской модели, в которой изотропия проявляется в трехмерном пространстве. Однако необычное уравнение состояния (63) резко ограничило пределы применимости этой модели. Ее обычно применяли к нереалистическому случаю: p = ε = 0, т. е. к пустому пространству.


Иосиф Розенталь читать все книги автора по порядку

Иосиф Розенталь - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Геометрия, динамика, вселенная отзывы

Отзывы читателей о книге Геометрия, динамика, вселенная, автор: Иосиф Розенталь. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.