Восприятие общей теории относительности зависело не от экспериментальных данных, как таковых, и не от внутренних качеств, присущих теории, а от сложного переплетения теории и эксперимента. Я подчеркиваю теоретическую сторону дела в противовес наивной переоценке экспериментальных данных. Ученые и историки науки уже давно отказались от старого тезиса Френсиса Бэкона, что научная гипотеза должна исследоваться путем терпеливого и беспристрастного наблюдения над природой. Совершенно очевидно, что Эйнштейн не копался в астрономических данных, создавая ОТО. И все же широко распространена точка зрения Джона Стюарта Милля, что проверить наши теории можно только с помощью наблюдений. Но, как мы видели, в отношении к ОТО эстетические суждения и экспериментальные данные были неразрывно связаны.
В определенном смысле с самого начала имелось огромное количество экспериментальных данных в поддержку ОТО, а именно наблюдения траекторий движения Земли вокруг Солнца, Луны вокруг Земли, а также все остальные детальные измерения в Солнечной системе, начатые еще Тихо Браге и его предшественниками и уже объясненные ньютоновской теорией. На первый взгляд подобные свидетельства могут показаться очень странными. Ведь мы не просто говорим о свидетельствах в пользу ОТО, заключающихся в сделанных задним числом вычислениях планетных движений, уже измеренных к тому времени, когда была создана теория. Нет, мы говорим сейчас об астрономических наблюдениях, не только сделанных до того, как Эйнштейн сформулировал свою теорию, но уже объясненных другой теорией, созданной Ньютоном. Как же может быть, чтобы успешное предсказание или объяснение задним числом подобных наблюдений могло расцениваться как триумф именно общей теории относительности?
Чтобы это понять, нам нужно повнимательнее присмотреться к теориям Ньютона и Эйнштейна. Ньютоновская физика сумела объяснить практически все наблюдаемые движения в Солнечной системе, однако сделала это ценой введения ряда довольно произвольных предположений. Например, рассмотрим закон, утверждающий, что сила тяготения, действующая со стороны некоторого тела на другое тело, убывает как квадрат расстояния между ними. В теории Ньютона нет ничего, что принуждало бы к выбору именно закона обратных квадратов. Сам Ньютон предложил этот закон, чтобы объяснить известные факты, касающиеся Солнечной системы, например закон Кеплера, связывающий размеры орбит планет со временем их обращения вокруг Солнца. Если же не обращать внимания на данные наблюдений, то в теории Ньютона можно заменить закон обратных квадратов законом обратных кубов или законом с показателем степени 2,01 в знаменателе без малейшего ущерба для основ самой теории[80]. Изменились бы лишь мелкие детали. Теория Эйнштейна значительно менее произвольна, она очень жестко построена. Если рассматривать медленно движущиеся тела в слабом гравитационном поле, когда мы, собственно, и можем говорить об обычной силе тяготения, то из уравнений общей теории относительности вытекает, что сила обязана уменьшаться по закону обратных квадратов. Невозможно без насилия над основными положениями теории так изменить ОТО, чтобы получить вместо закона обратных квадратов какую-то иную зависимость силы тяготения от расстояния.
Далее, как особо подчеркивал Эйнштейн в своих работах, тот факт, что сила тяготения, действующая на тело малых размеров, пропорциональна только массе этого тела и не зависит ни от каких других его свойств, выглядит в теории Ньютона достаточно произвольным. В рамках этой теории гравитационная сила могла бы зависеть от размеров, формы или химического состава тела, и это не привело бы к потрясению основ. В теории Эйнштейна сила тяготения, действующая на тело, обязана быть пропорциональной массе тела и не зависеть от любых иных его свойств19); если бы это было не так, силы тяготения и силы инерции по-разному действовали бы на разные тела и было бы невозможно говорить о свободно падающей системе отсчета, в которой ни одно тело не испытывает действия сил тяготения. Это, в свою очередь, не позволило бы интерпретировать тяготение как геометрический эффект кривизны пространства-времени. Еще раз повторим, что теория Эйнштейна обладает значительно большей жесткостью, чем теория Ньютона. Именно по этой причине Эйнштейн имел право полагать, что именно ему удалось объяснить обычные движения тел в Солнечной системе так, как не мог этого сделать Ньютон.
К сожалению, очень трудно точно сформулировать понятие жесткости физической теории. И Ньютон, и Эйнштейн знали общие свойства движения планет до того, как они сформулировали свои теории; более того, Эйнштейн знал, что он должен получить для силы тяготения что-то похожее на закон обратных квадратов, с тем, чтобы его теория воспроизводила успехи теории Ньютона. Наконец, он знал, что нужно как-то разобраться с зависимостью гравитационной силы от массы. Лишь рассматривая всю окончательно завершенную теорию в целом, можно сказать, что ОТО объяснила закон обратных квадратов или пропорциональность гравитационной силы массе тела, но все равно это суждение остается делом вкуса и интуиции. Ведь оно на самом деле сводится к утверждению, что, если изменить теорию Эйнштейна так, чтобы допустить иной закон вместо закона обратных квадратов или допустить непропорциональность силы тяготения массе тела, то теория станет невыносимо безобразной. Итак, высказывая суждения о значении тех или иных данных, мы снова используем эстетические оценки и наше общее теоретическое наследие.
* * *
Мой следующий рассказ посвящен квантовой электродинамике – квантово-механической теории взаимодействия электронов и света. В определенном смысле это зеркальное отражение предыдущего рассказа. В течение сорока лет общая теория относительности рассматривалась как правильная теория тяготения, несмотря на скудость свидетельств в ее пользу, и происходило это потому, что теория была неотразимо прекрасна. В противоположность этому квантовая электродинамика сразу же нашла подтверждение в огромном количестве экспериментальных данных, но несмотря на это двадцать лет к ней относились с большим недоверием из-за внутренних теоретических противоречий, которые, казалось, могли быть разрешены только очень некрасивым образом.
В 1926 г. в одной из первых работ по квантовой механике, так называемой «работе троих» (Dreimannerarbeit), авторами которой были Макс Борн, Вернер Гейзенберг и Паскуаль Йордан, эта теория была применена для описания электрического и магнитного полей. Удалось показать, что энергия и импульс электрического и магнитного полей в луче света распространяются сгустками[81], ведущими себя как частицы, и подтвердить, таким образом, справедливость идеи Эйнштейна, высказанной им в 1905 г., о частицах света – фотонах. Другой главной составной частью квантовой электродинамики стала созданная в 1928 г. теория Поля Дирака. В первоначальной форме эта теория показала, каким образом совместить квантовомеханическое описание электронов на языке волновых функций с требованиями специальной теории относительности. Одним из важнейших следствий теории Дирака было то, что для каждого сорта заряженных частиц вроде электрона должна существовать частица той же массы, но с противоположным по знаку зарядом, – так называемая античастица. Античастица к электрону была открыта в 1932 г. и называется позитроном. В конце 20-х – начале 30-х гг. квантовая электродинамика была использована для расчета множества физических процессов (например, рассеяние фотона при столкновении с электроном, рассеяние одного электрона другим, аннигиляция или рождение электрона и позитрона), причем результаты расчетов в целом находились в прекрасном согласии с экспериментом.
Тем не менее к середине 1930-х гг. возобладала точка зрения, что квантовую электродинамику можно рассматривать всерьез только как некоторое приближение, справедливое лишь для реакций с участием фотонов, электронов и позитронов достаточно малых энергий. Трудность, с которой столкнулись ученые, была непохожа на обычные трудности, о которых рассказывают в популярных трудах по истории науки, когда возникают противоречия между теоретическими предсказаниями и экспериментальными данными. В данном случае существенное противоречие возникло внутри самой физической теории. Это была проблема бесконечностей.
Существование этой проблемы в разных формах отмечалось Гейзенбергом и Паули, а также шведским физиком Айваром Валлером, но наиболее ясно и тревожно она прозвучала в 1930 г. в работе молодого американского физика-теоретика Роберта Юлиуса Оппенгеймера. В этой работе Оппенгеймер попытался использовать квантовую электродинамику для расчета одного тонкого эффекта, связанного с энергиями атомов. Электрон в атоме способен испустить квант света, фотон, затем некоторое время покрутиться по орбите и вновь поглотить этот фотон (похоже на игрока в американский футбол, который подхватывает мяч, брошенный им самим же). Фотон никогда не покидает пределы атома, и мы можем судить о его существовании только косвенно, по тому влиянию, которое он оказывает на такие свойства атома, как его энергия или создаваемое им магнитное поле. (Такие фотоны называются виртуальными.) Согласно правилам квантовой электродинамики, этот процесс приводит к сдвигу энергии атомного состояния, причем величина его может быть представлена в виде суммы бесконечного числа вкладов[82], каждый из которых соответствует каждому возможному значению энергии виртуального фотона, которая ничем не ограничена. Оппенгеймер обнаружил при вычислении, что так как в сумму дают вклад слагаемые, отвечающие фотонам неограниченно большой энергии, то и сама сумма оказывается бесконечной, что в результате приводит к бесконечно большому сдвигу энергии атома20). Высокие энергии соответствуют малым длинам волн; так как ультрафиолетовый свет имеет меньшую длину волны, чем видимый, возникновение такой бесконечности назвали ультрафиолетовой катастрофой.