MyBooks.club
Все категории

Саймон Сингх - Великая Теорема Ферма

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Саймон Сингх - Великая Теорема Ферма. Жанр: Математика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Великая Теорема Ферма
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
286
Читать онлайн
Саймон Сингх - Великая Теорема Ферма

Саймон Сингх - Великая Теорема Ферма краткое содержание

Саймон Сингх - Великая Теорема Ферма - описание и краткое содержание, автор Саймон Сингх, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
История загадки, которая занимала лучшие умы мира на протяжении 358 лет

Великая Теорема Ферма читать онлайн бесплатно

Великая Теорема Ферма - читать книгу онлайн бесплатно, автор Саймон Сингх

Одним из примеров задачи, упорно не поддававшейся решению на протяжении десятилетий, может служить гипотеза о точках. В ней речь идет о нескольких точках, каждая из которых соединена с другими точками прямыми, как показано на рис. 13. Гипотеза утверждает, что невозможно нарисовать диаграмму такого рода так, чтобы на каждой прямой лежали по крайней мере три точки (диаграмму, на которой все точки лежат на одной и той же прямой, мы исключаем из рассмотрения). Экспериментируя с несколькими диаграммами, мы можем убедиться в том, что гипотеза о точках, по-видимому, верна. На рис. 13а пять точек связаны шестью прямыми. На четырех из этих линий не наберется по три точки, и поэтому ясно, что такое расположение точек не удовлетворяет требованию задачи, согласно которому каждой прямой принадлежит по три точки.

а) б)

Рис. 13. На этих диаграммах каждая точка связана с каждой из остальных точек прямыми. Можно ли построить такую диаграмму, на которой каждая прямая проходит по крайней мере через три точки?


Добавив одну точку и одну проходящую через нее прямую, мы снизили число прямых, на которых не лежат по три точки, до трех. Но дальнейшее приведение диаграммы к условиям гипотезы (такая перестройка диаграммы, в результате которой на каждой прямой оказалось бы по три точки), по-видимому, невозможна. Разумеется, это не доказывает, что такой диаграммы не существует.

Поколения математиков пытались найти доказательство, казалось бы, нехитрой гипотезы о точках — и потерпели неудачу. Эта гипотеза вызывает еще большее раздражение потому, что когда решение в конце концов было найдено, выяснилось, что для него необходимы лишь минимальные познания в математике и один неординарный поворот в рассуждениях. Ход доказательства намечен в Приложении 6.

Вполне возможно, что все методы, необходимые для доказательства Великой теоремы Ферма, уже имелись в распоряжении математиков, и что единственным недостающим ингредиентом был какой-то остроумный ход. Уайлс не собирался сдаваться: детская мечта о доказательстве Великой теоремы Ферма превратилась в глубокое и серьезное увлечение. Ознакомившись со всем, что можно было узнать о математике XIX века, Уайлс решил взять на вооружение методы XX века.

Глава 4. Уход в абстракцию

Доказательство — это идол, которому математики приносят себя в жертву.

Сэр Артур Эддингтон

После работ Эрнста Куммера надежды найти доказательство ослабли, как никогда прежде. Кроме того, в математике начали развиваться различные новые области. Возник риск, что новое поколение математиков останется в неведении относительно неразрешимой проблемы. К началу XX века теорема Ферма все еще занимала особое место в сердцах специалистов по теории чисел, но они относились к ней так же, как химики относятся к алхимии. И алхимия, и Великая теорема Ферма в глазах наших современников выглядят романтическими мечтами прошлого.

В 1908 году Пауль Вольфскель, немецкий промышленник из Дармштадта, вдохнул в старую проблему новую жизнь. Семья Вольфскелей славилась своим богатством и покровительством искусствам и наукам, и Пауль не был исключением. В университете он изучал математику и хотя свою жизнь Пауль посвятил строительству империи семейного бизнеса, все же он поддерживал контакт с профессиональными математиками и продолжал на любительском уровне заниматься теорией чисел. В частности, Вольфскель не отказался от мысли найти доказательство Великой теоремы Ферма.


Вольфскель отнюдь не был одаренным математиком, и ему не было суждено внести заметный вклад в поиски доказательства Великой теоремы Ферма. Но цепочка неординарных событий привела к тому, что его имя оказалось навсегда связанным с теоремой Ферма и вдохновило тысячи людей заняться поиском ее доказательства.

История начинается с того, что Вольфскель увлекся красивой женщиной, личность которой так никогда и не была установлена. К великому сожалению для Вольфскеля, загадочная женщина отвергла его. Он впал в такое глубокое отчаяние, что решил совершить самоубийство. Вольфскель был человеком страстным, но не импульсивным, и поэтому принялся во всех подробностях разрабатывать свою смерть. Он назначил дату своего самоубийства и решил выстрелить себе в голову с первым ударом часов ровно в полночь. За оставшиеся дни Вольфскель решил привести в порядок свои дела, которые шли великолепно, а в последний день составил завещание и написал письма близким друзьям и родственникам.

Вольфскель трудился с таким усердием, что закончил все свои дела до полуночи и, чтобы как-нибудь заполнить оставшиеся часы, отправился в библиотеку, где стал просматривать математические журналы. Вскоре ему на глаза попалась классическая статья Куммера, в которой тот объяснял, почему потерпели неудачу Коши и Ламе. Работа Куммера принадлежала к числу самых значительных математических публикаций своего века и как нельзя лучше подходила для чтения математику, задумавшему совершить самоубийство. Вольфскель внимательно, строка за строкой, проследил за выкладками Куммера. Неожиданно Вольфскелю показалось, что он обнаружил пробел: автор сделал некое предположение и не обосновал этот шаг в своих рассуждениях. Вольфскель заинтересовался, действительно ли ему удалось обнаружить серьезный пробел, или сделанное Куммером предположение было обоснованным. Если был обнаружен пробел, то имелся шанс, что Великую теорему Ферма удастся доказать гораздо проще, чем полагали многие.

Вольфскель сел за стол, тщательно проанализировал «ущербную» часть рассуждений Куммера и принялся набрасывать минидоказательство, которое должно было либо подкрепить работу Куммера, либо продемонстрировать ошибочность принятого им предположения и, как следствие, опровергнуть все его доводы. К рассвету Вольфскель закончил свои вычисления. Плохие (с точки зрения математики) новости состояли в том, что доказательство Куммера удалось исцелить, и Великая теорема Ферма по-прежнему осталась недоступной. Но были и хорошие новости: время, назначенное для самоубийства, миновало, а Вольфскель был так горд тем, что ему удалось обнаружить и восполнить пробел в работе великого Эрнеста Куммера, что его отчаяние и печаль развеялись сами собой. Математика вернула ему жажду жизни.

Вольфскель разорвал свои прощальные письма и переписал свое завещание в свете случившегося в ту ночь. После его смерти, последовавшей в 1908 году, завещание было оглашено и повергло семью Вольфскеля в шок: выяснилось, что Пауль завещал значительную часть своего состояния в качестве премии тому, кто сумеет доказать Великую теорему Ферма. Премия в 100000 марок (более 1 000 000 фунтов стерлингов в современных масштабах) была той суммой, которую Вольфскель счел своим долгом уплатить в награду за головоломную проблему, спасшую ему жизнь. Деньги были положены на счет Королевского научного общества Гёттингена, которое в том же году официально объявило о проведении конкурса на соискание премии Вольфскеля:

«Во исполнение воли д-ра Пауля Вольфскеля, скончавшегося в Дармштадте, мы объявляем о создании фонда в сто тысяч марок, каковая сумма и будет вручена тому, кто первым докажет Великую теорему Ферма.

Будут соблюдаться следующие правила.

1. Королевское научное общество в Гёттингене обладает полной свободой воли в принятии решения, кому надлежит присудить премию. Рукописи, представленные с единственной целью принять участие в конкурсе на получение премии, приниматься не будут. К рассмотрению допускаются только математические мемуары, представленные в виде статей в периодических изданиях или имеющиеся в книжных лавках. Общество обращается к авторам подобных мемуаров с просьбой присылать по крайней мере пять печатных экземпляров.

2. Работы, опубликованные на языках, непонятных ученым специалистам, выбранным для работы в жюри, не допускаются к участию в конкурсе. Авторам таких работ разрешается заменить их переводами, удостоверившись в точности последних.

3. Общество не берет на себя ответственность за рассмотрение работ, не представленных на конкурс, а также за ошибки, которые могут произойти из-за того, что автор работы или часть работы не известны Обществу.

4. Общество сохраняет за собой право принятия решения в случае, когда к решению проблемы имеет отношение несколько лиц или когда решение является результатом совместных усилий нескольких ученых, в том числе и по вопросам распределения премии.

5. Премия присуждается Обществом не ранее, чем через два года после опубликования мемуара, удостоенного премией. Двухлетний промежуток времени необходим для того, чтобы немецкие и иностранные математики имели возможность высказать свое мнение по поводу опубликованного решения.


Саймон Сингх читать все книги автора по порядку

Саймон Сингх - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Великая Теорема Ферма отзывы

Отзывы читателей о книге Великая Теорема Ферма, автор: Саймон Сингх. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.