Рис. 49
Алгебраические изыскания Пьеро в основном вошли в книгу, которую выпустил в свет Лука Пачоли (1445–1517) под названием «Summa de arithmetica, geometria, proportioni et proportionalita» («Свод познаний в арифметике, геометрии, пропорциях и пропорциональности»). Труды Пьеро по многогранникам, написанные на латыни, перевел на итальянский тот же Лука Пачоли – и опять же включил (ну, или, выражаясь не столь деликатно, попросту украл) в свою знаменитую книгу о золотом сечении под названием «О божественной пропорции» («Divina Proportione»).
Кто же он был, этот полный противоречий математик Лука Пачоли? Величайший плагиатор в истории математики – или все же великий популяризатор математической науки?
Невоспетый герой Возрождения?
Лука Пачоли родился в 1445 году в том же тосканском городке Борго Сансеполькро, где родился и держал мастерскую Пьеро делла Франческа. Более того, начальное образование Лука получил именно в мастерской Пьеро. Однако, в отличие от других учеников, выказывавшим способности к живописи – некоторым из них, например, Пьетро Перуджино, суждено было стать великими живописцами, – Лука оказался более склонным к математике. Пьеро и Пачоли сохраняли дружеские отношения и в дальнейшем: доказательством тому служит то, что Пьеро изобразил Пачоли в виде Св. Петра Веронского (Петра Мученика) на «Алтаре Монтефельтро». Еще сравнительно молодым человеком Пачоли перебрался в Венецию и стал там наставником трех сыновей состоятельного торговца. В Венеции он продолжил математическое образование под руководством математика Доменико Брагадино и написал первую книгу по арифметике.
В 1470 годах Пачоли изучал теологию и постригся в монахи-францисканцы. С тех пор его стало принято называть фра Лука Пачоли. В последующие годы он много путешествовал, преподавал математику в университетах в Перудже, Задаре, Неаполе и Риме. В то время Пачоли, вероятно, некоторое время учил и Гвидобальдо Монтефельтро, которому в 1482 году предстояло стать герцогом Урбинским. Лучший, пожалуй, портрет математика – это картина кисти Якопо де Барбари (1440–1515), изображающая, как Лука Пачоли дает урок геометрии (рис. 50, картина находится в музее Каподимонте в Неаполе). Справа на книге Пачоли «Summa» покоится одно из платоновых тел – додекаэдр. Сам Пачоли во францисканской рясе (тоже похожий на правильный многогранник, если приглядеться) копирует чертеж из XIII книги «Начал» Евклида. Прозрачный многогранник под названием ромбокубоктаэдр (одно из архимедовых тел, многогранник с 26 гранями, 18 из которых – квадраты, а 8 – равносторонние треугольники), висящий в воздухе и наполовину наполненный водой, символизирует чистоту и вечность математики. Художнику удалось с поразительным искусством передать преломление и отражение света в стеклянном многограннике. Личность ученика Пачоли, изображенного на этой картине, стала предметом споров. В частности, предполагают, что этот юноша – сам герцог Гвидобальдо. Английский математик Ник Маккиннон в 1993 году выдвинул интересную гипотезу. В своей статье «Портрет фра Лука Пачоли», опубликованной в «Mathematical Gazette» и основанной на весьма солидных исследованиях, Маккиннон делает вывод, что это портрет великого немецкого живописца Альбрехта Дюрера, которого очень интересовали и геометрия, и перспектива (а к его отношениям с Пачоли мы еще вернемся чуть ниже). И в самом деле, лицо ученика поразительно похоже на автопортрет Дюрера.
Рис. 50
В 1489 году Пачоли вернулся в Борго Сансеполькро, получив некоторые привилегии от самого Папы, однако местный религиозный истеблишмент встретил его с ревнивой недоброжелательностью. Около двух лет ему даже запрещали преподавать. В 1494 году Пачоли отправился в Венецию печатать свою книгу «Summa», которую посвятил герцогу Гвидобальдо. «Summa» по природе и по размаху (около 600 страниц) – подлинно энциклопедический труд, где Пачоли свел воедино все, что было на то время известно в области арифметики, алгебры, геометрии и тригонометрии. В своей книге Пачоли не стесняется заимствовать задачи об икосаэдре и додекаэдре из «Трактата» Пьеро делла Франческа и другие задачи по геометрии, а также по алгебре, из трудов Фибоначчи и других ученых (правда, обычно выражает благодарность автору, как полагается). Пачоли признается, что его главный источник – это Фибоначчи, и говорит, что там, где нет ссылок на кого-то другого, труды принадлежат Леонардо Пизанскому. Интересный раздел «Summa» – бухгалтерская система двойной записи, метод, позволяющий прослеживать, откуда деньги пришли и куда ушли. Эту систему изобрел не сам Пачоли, он лишь свел воедино приемы венецианских купцов эпохи Возрождения, однако считается, что это первая книга по бухгалтерии в истории человечества. Так и получилось, что желание Пачоли «позволить дельцу незамедлительно получать сведения о своих активах и денежных обязательствах» стяжало ему прозвище «Отец бухгалтерии», и в 1994 году бухгалтеры всего мира отмечали пятисотлетие «Summa» в Сансеполькро, как теперь называется этот город.
В 1480 году место герцога Миланского фактически занял Людовико Сфорца. На самом деле он был всего лишь регентом при настоящем герцоге, которому тогда было только семь лет; это событие положило конец периоду политических интриг и убийств. Людовико решил украсить свой двор художниками и учеными и в 1482 году пригласил Леонардо да Винчи в «коллегию герцогских инженеров». Леонардо очень интересовался геометрией, в особенности – ее практическим приложением в механике. По его словам, «Механика – это рай среди математических наук, поскольку именно она порождает плоды математики». А впоследствии, в 1496 году, именно Леонардо, скорее всего, добился, чтобы герцог пригласил ко двору и Пачоли в качестве учителя математики. Леонардо, несомненно, учился геометрии и у Пачоли, а ему привил любовь к живописи.
Во время пребывания в Милане Пачоли завершил работу над трехтомным трактатом «О божественной пропорции», вышедшим в свет в Венеции в 1509 году. Первый том, «Compendio de Divina Proportione» («Компендиум о божественной пропорции»), содержит подробный свод всех качеств золотого сечения (его Пачоли называет «божественной пропорцией) и исследование платоновых тел и других многогранников. На первой странице «О божественной пропорции» Пачоли несколько выспренно заявляет, что это «труд, необходимый всем пытливым, ясным человеческим умам, в котором всякий, кто любит изучать философию, перспективу, живопись, ваяние, зодчество, музыку и иные математические дисциплины, найдет весьма тонкое, изящное и прелестное учение и получит наслаждение от разнообразных вопросов, затрагивающих все тайные науки».
Первый том трактата «О божественной пропорции» Пачоли посвятил Людовико Сфорца, а в пятой главе он перечисляет пять причин, почему, по его мнению, золотое сечение следует именовать не иначе как божественной пропорцией.
1. «Она одна, едина и всеобъемлюща». Пачоли сравнивает уникальность золотого сечения с тем обстоятельством, что «Единый» – «Высочайший эпитет самого Господа».
2. Пачоли видит сходство между тем, что определение золотого сечения включает в себя ровно три длины (АС, СВ и АВ на рис. 24), и существованием Святой Троицы – Отца, Сына и Святого Духа.
3. Для Пачоли непостижимость Бога и то обстоятельство, что золотое сечение – иррациональное число, эквивалентны. Вот как он пишет: «Подобно тому, как Господа нельзя определить должным образом и невозможно постичь его посредством слов, так и наша пропорция не может быть передана постижимыми цифрами и выражена через какое бы то ни было рациональное количество, она навеки останется тайной, сокрытой от всех, и математики именуют ее иррациональной».
4. Пачоли сравнивает вездесущесть и неизменность Бога с самоподобием, которое связывают с золотым сечением: его значение всегда неизменно и не зависит от длины отрезка, который делят в соответствующей пропорции, или с размером правильного пятиугольника, в котором вычисляют соотношения длин.
5. Пятая причина показывает, что Пачоли придерживался даже более платоновских взглядов на бытие, чем сам Платон. Пачоли утверждает, что подобно тому, как Господь дал жизнь мирозданию посредством квинтэссенции, нашедшей отражение в додекаэдре, так и золотое сечение дало жизнь додекаэдру, поскольку невозможно построить додекаэдр без золотого сечения. Пачоли добавляет, что невозможно сравнить остальные платоновы тела (символы воды, земли, огня и воздуха) друг с другом без опоры на золотое сечение.
В самой книге Пачоли постоянно разглагольствует о качествах золотого сечения. Он последовательно анализирует 13 так называемых «эффектов» «божественной пропорции» и каждому из этих «эффектов» приписывает эпитеты вроде «неотъемлемый», «неповторимый», «чудесный», «высочайший» и т. д. Например, тот «эффект», что золотые прямоугольники можно вписать в икосаэдр (рис. 22), он называет «непостижимым». Он останавливается на 13 «эффектах», сделав вывод, что «следует завершить этот перечень ради спасения души», поскольку именно 13 человек сидели за столом во время Тайной Вечери.