MyBooks.club
Все категории

Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир. Жанр: Математика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
160
Читать онлайн
Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир

Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир краткое содержание

Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - описание и краткое содержание, автор Стивен Строгац, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Удовольствие от Х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац; пер. с англ. (Steven Strogatz. The Joy of X. A Guided Tour of Math, from One to Infinity) — М.: Манн, Иванов и Фербер, 2014.Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью. Автор объясняет фундаментальные математические идеи просто и элегантно, приводя блистательные примеры, понятные каждому.

Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир читать онлайн бесплатно

Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - читать книгу онлайн бесплатно, автор Стивен Строгац

S = 1–1 + 1–1 +…

Теперь оставим первую 1 в правой части уравнения в покое и займемся остальными его членами. Они создают собственную копию S, и члены, стоящие справа от первой 1, вычитаются из нее:

S = 1–1 + 1–1 +… = 1 — (1–1 + 1 —…) = 1 — S.

Так что S = 1 — S и, следовательно, S = .

Дебаты по поводу суммы 1–1 + 1–1 +… бушевали почти 150 лет, пока новое поколение аналитиков не водрузило все виды исчисления и его бесконечные процессы (пределы, производные, интегралы, бесконечные ряды) на прочный фундамент раз и навсегда. Они воссоздали предмет с нуля, выстроив строгую логическую структуру, как в Евклидовой геометрии.

Два основных понятия числового ряда — частичные суммы и сходимость. Частичная сумма представляет собой нарастающую сумму. Вы просто суммируете конечное число членов, а затем останавливаетесь. Например, если сложить первые три члена ряда 1–1 + 1–1 +… получим 1–1 + 1 = 1. Давайте назовем это S3. Буква S обозначает «сумму», а индекс 3 показывает, что мы сложили только первые три члена. Вот несколько первых частичных сумм для этого ряда

S1 = 1

S2 = 1–1 = 0

S3 = 1–1 + 1 = 1

S4 = 1–1 + 1–1 = 0.

Таким образом, мы видим, что частичные суммы скачут между 0 и 1, и при этом не наблюдается никакой тенденции остановиться на 0, 1, или где-нибудь еще. По этой причине современные математики сказали бы, что сумма 1–1 + 1–1 +… не сходится.

Другими словами, частичные суммы не стремятся ни к какому предельному значению по мере увеличения числа членов, включенных в них. Поэтому сумма этого бесконечного ряда не имеет смысла.

Итак, мы придерживаемся прямой и узконаправленной линии поведения: не тратим впустую время и ограничиваемся анализом только тех рядов, которые сходятся. Значит ли это, что мы избежим встреченных ранее противоречий?

Пока нет. Кошмар продолжается. И это хорошо, что он существует, потому что напуганные им аналитики XIX века открыли более глубокие тайны в самом сердце исчисления, а затем вытащили их на свет. Извлеченные из этого уроки оказались бесценными не только для математики, но и для ее приложений во всех областях — от музыки до медицинской визуализации.

Рассмотрим ряд, известный в гармоническом анализе как знакочередующийся гармонический ряд:

1 — + — + — +…

Вместо одного шага вперед и одного назад здесь шаги становятся все короче и короче. Один шаг вперед, но только полшага назад, затем треть шага вперед и четверть шага назад и так далее. Обратите внимание на следующую закономерность: дроби с нечетным знаменателем имеют положительные знаки, а с четным — отрицательные. Частичные суммы в данном случае равны:

S1 = 1

S2 = 1 — = 0,500

S3 = 1 — + = 0,833…

S4 = 1 — + — = 0,583…

И если вы рассмотрите достаточно много таких сумм, то обнаружите, что они нацеливаются на число, близкое к 0,69. Действительно, можно доказать, что этот ряд сходится. Его предельное значение равно натуральному логарифму от 2 (обозначается ln2), приблизительно составляющему 0,693147.

Так что же здесь кошмарного? На первый взгляд, ничего. Знакочередующийся гармонический ряд походит на паиньку: сходящийся, с хорошим поведением. Ваши родители похвалили бы его.

Именно это и делает его опасным. Это хамелеон, мошенник, скользкий тип, который может быть кем угодно. Если переставлять его члены в произвольном порядке, вы можете подвести его сумму к любому значению. Буквально. Например, 297, 126 или –42π, или 0, или любому другому.

Это выглядит так, будто ряд полон презрения к коммутативному закону сложения. Просто просуммировав его члены в иной последовательности, вы можете изменить ответ, чего никогда не произошло бы с конечной суммой. Поэтому, даже если исходный ряд сходится, в нем по-прежнему будут странности, которые невозможно представить в обычной арифметике.

Вместо того чтобы доказать этот удивительный факт (результат, известный как теорема Римана о перестановке слагаемых в условно-сходящихся рядах)[174], рассмотрим очень простую перестановку, сумму которой легко посчитать. Сгруппируем члены этого ряда таким образом, чтобы к каждому положительному слагаемому прибавлялось два отрицательных.

Далее упростим каждое выражение в скобках, вычитая второй член из первого и оставляя без изменения третий член. Тогда ряд сводится к сумме:

После вынесения за скобки из всех дробей выражения как общего множителя ряд примет вид:

Смотрите, кто вернулся! Бестия в скобках — это снова знакочередующийся гармонический ряд. Но в результате перестановки, даже при сохранении всех его членов, как-то получилось, что он вдвое уменьшился по сравнению с первоначальным! Представленный в таком виде ряд теперь сходится к ln2 = 0,346…

Странно? Да. Ненормально? Да[175]. Но неудивительно ли, что то же самое происходит и в реальной жизни. Как мы уже убедились в ходе прочтения книги, даже самые заумные и надуманные понятия математики часто находят практическое применение. Связь с практикой в данном случае заключается в том, что во многих областях науки и техники (от обработки сигналов и акустики до финансов и медицины) лучше всего представлять различные виды кривых, звуков, сигналов или изображений как группы (или совокупности) более простых кривых, звуков, сигналов или изображений. При этом основными строительными блоками будут синусоиды. Этот метод называется анализом Фурье[176], а соответствующая сумма — рядом Фурье. Но когда рассматриваемый ряд имеет некоторые патологические свойства, как у знакочередующегося гармонического ряда и его невменяемых родственников, сходимость у ряда Фурье может быть действительно очень необычной.

Вот, например, один из рядов Фурье, непосредственно вдохновленный знакочередующимся гармоническим рядом:

Чтобы получить представление о том, как он выглядит на графике, давайте рассмотрим сумму его первых десяти членов.

Частичная сумма 10 членов

Эта частичная сумма (показана сплошной линией) явно пытается приблизиться к более простой волновой кривой в форме зубцов пилы (показано пунктирной линией). Заметим, однако, что вблизи краев зубцов что-то не так. Синусоида «промахнулась» и приняла вид странного пальца, который выходит за пилообразную волну. Чтобы увидеть это отчетливее, посмотрим на увеличение одного из зубцов при x = π:

Частичная сумма 10 членов

Попытаемся избавиться от пальца, включив в частичную сумму больше слагаемых. Не повезло. Палец просто становится тоньше и перемещается ближе к краю, но его высота остается примерно такой же.

Частичная сумма 50 членов

Частичная сумма 100 членов

Вину за происходящее можно возложить на знакочередующийся гармонический ряд. Его описанная выше патология сейчас загрязняет ряды, связанные с рядами Фурье. Они отвечают за этот раздражающий палец, который никуда не денется.

Данный эффект, обычно называемый феноменом Гиббса[177], больше, чем просто математический курьез. Он известен с середины XIX века и в настоящее время проявляется в цифровой фотографии и на МРТ-сканировании[178]. Нежелательные колебания, вызванные феноменом Гиббса, могут привести к размытости, мерцанию и прочим непреднамеренным нежелательным визуальным искажениям на острых краях видеоизображения. В медицинской практике их можно ошибочно принять за поврежденную ткань или скрыть повреждения, которые есть на самом деле.

К счастью, сто лет назад аналитики точно определили, что вызывает артефакты Гиббса (см. примечание[179]), и научили нас, как преодолеть эти явления, или, по крайней мере, распознать их в случае появления.

30. Отель Гильберта

В феврале 2010 года я получил электронное письмо от женщины по имени Ким Форбс. Ее шестилетний сын Бен задал ей математический вопрос, на который она не смогла ответить, и она надеялась, что я смогу помочь.

Сегодня 100-й день его пребывания в школе. Сын был очень взволнован и рассказал мне все, что знает о числе 100, включая то, что оно четное. Затем он сказал, что 101 нечетное число, а 1 000 000 — четное и т. д. А потом остановился и спросил: «Бесконечность — четная или нечетная?»

Я объяснил Ким, что бесконечность не может быть ни четной, ни нечетной. Это не число в обычном смысле, и оно не подчиняется правилам арифметики. Например, я писал: «Если бы бесконечность была нечетным числом, при умножении на себя она стала бы четным числом. И обе были бы бесконечностями! Так что в целом понятие четности и нечетности не имеет смысла для бесконечности».


Стивен Строгац читать все книги автора по порядку

Стивен Строгац - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир отзывы

Отзывы читателей о книге Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир, автор: Стивен Строгац. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.