патефон <==> система аксиом теории чисел
патефон низкого качества <==> «слабая» система аксиом
качественный патефон <==> «сильная» система аксиом
«совершенный» патефон <==> полная система для теории чисел
«схема устройства» патефона <==> аксиомы и правила формальной системы
пластинка <==> строчка формальной системы
«проигрываемая» пластинка <==> теоремы формальной системы
«непроигрываемая» пластинка <==> не-теоремы формальной системы
звук <==> истинное высказывание теории чисел
воспроизводимый звук <==> интерпретированная теорема системы
невоспроизводимый звук <==> истинное высказывание, не являющееся теоремой
название песий «Меня нельзя воспроизвести на патефоне X» <==> неявное значение строчки Геделя «Меня нельзя вывести в формальной системе X»
На этой диаграмме приводится основа изоморфизма между Теоремой Гёделя и «Акростиконтрапунктусом». Не волнуйтесь, если вы пока не вполне понимаете суть Теоремы Гёделя — мы дойдем до нее только через несколько глав! Однако, прочитав этот Диалог, вы уже до некоторой степени прониклись духом этой Теоремы, даже если это и произошло незаметно для вас самих. Теперь я оставляю вас, читатель, с тем, чтобы вы попытались найти другие типы неявных значений в «Акростиконтрапунктусе». «Quaerendo invenietis»
«Искусство фуги»
Несколько слов об «Искусстве фуги»… Написанное в последний год жизни Баха, оно состоит из восемнадцати фуг, основанных на одной и той же теме. По-видимому, создание «Музыкального приношения» вдохновило Баха еще на один цикл фуг, на этот раз с менее сложной исходной темой, где он решил показать все возможности этой формы. Простую тему «Искусства фуги» Бах обыгрывает множеством разных способов. Большинство фуг четырехголосные; их сложность и глубина выражения постепенно возрастают. Ближе к концу фуги достигают такой степени сложности, что кажется невероятным, что композитору удается поддерживать этот уровень. Однако это ему удается… до последнего «Контрапункта».
«Искусство фуги» (а также жизнь композитора) были прерваны следующими обстоятельствами: Бах, у которого в течение многих лет были проблемы со зрением, наконец решился на операцию. Операция прошла неудачно, и Бах ослеп. Однако это не остановило его от работы над монументальным проектом, целью которого было описание всех возможностей искусства полифонической композиции; одной из важных черт проекта было использование многих тем. В композицию, которая была задумана как предпоследняя, Бах включил собственное имя, закодированное в третьей теме. Однако сразу после этого его здоровье так ухудшилось, что работу над любимым проектом пришлось прекратить. Несмотря на болезнь, Баху удалось продиктовать своему зятю финальную хоральную прелюдию, о которой Форкель, биограф композитора, написал следующее: «Когда я исполняю эту прелюдию, я всегда бываю глубоко тронут духом набожного смирения и веры; не могу сказать, чего мне не хватало бы больше: этого Хорала, или окончания последней фуги.»
Незадолго до смерти к Баху неожиданно вернулось зрение. Через несколько часов после этого с ним случился удар, и десять дней спустя он скончался, оставив загадку неполноты своего «Искусства фуги». Не связано ли это с тем, что Бах использовал там автореференцию?
Проблемы, связанные с Гёделевским результатом
Черепаха утверждает, что никакой достаточно мощный патефон не может быть совершенен — то есть способен воспроизвести любые звуки, записанные на пластинке. Гёдель утверждает, что никакая достаточно мощная формальная система не может быть совершенна — то есть способна представить любое истинное высказывание в виде теоремы. Так же, как и в случае с патефонами, это кажется дефектом только тогда, когда мы предъявляем слишком высокие требования к возможностям формальных систем. Однако для математиков начала столетия подобные завышенные требования были обычным делом; в то время во всемогуществе логических рассуждений никто не сомневался. Доказательство обратного было найдено в 1931 году. Тот факт, что в любой достаточно сложной формальной системе истинных утверждений больше, чем теорем, называется «неполнотой» этой системы. Удивительно то, что методы рассуждения, используемые Гёделем в его доказательстве, по-видимому, невозможно заключить в рамки формальных систем. С первого взгляда кажется, что Гёделю впервые удалось выразить необычайно глубокую и важную разницу между человеческой логикой и логикой машины. Это загадочное несоответствие между мощью живых и неживых систем отражено в несоответствии между понятием «истинности» и понятием «теоремности»; таков возможный романтический взгляд на эту ситуацию.
Модифицированная система pr и противоречивость
Чтобы взглянуть на ситуацию более реалистично, нам необходимо глубже понять, почему и каким образом смысл выражается в формальных системах при помощи изоморфизма. (Мне кажется, что на самом деле это приводит к еще более романтическому взгляду на вещи.) Итак, сейчас мы приступаем к изучению некоторых новых для нас аспектов отношения между значением и формой. Первым делом, давайте создадим новую формальную систему, чуть-чуть изменив нашу старую знакомую, систему пр. Добавим к ней еще одну схему аксиом, сохранив при этом как старую схему, так и единственное правило вывода.
СХЕМА АКСИОМ II: Если x является строчкой тире, то xp-rx будет аксиомой.
Ясно, что как --p-r--, так и --p-r--- будут теоремами новой системы. Однако они интерпретируются, соответственно, как «2 плюс 1 равняется 2» и «2 плюс 2 равняется 3». Легко увидеть, что такая система будет содержать массу ложных высказываний (если считать строчку высказыванием). Таким образом, наша новая система противоречива по отношению к окружающему миру.
Как говорится, беда не приходит одна, в новой системе есть также и внутренние проблемы. Она содержит высказывания, противоречащие друг другу, такие как -p-r-- (старая аксиома) и -p-r- (новая аксиома). Это означает, что наша система противоречива также и в другом смысле — внутренне.
Так что же, лучше совсем отказаться от новой системы?
Ни в коем случае! Я нарочно описал эти «противоречия» в «лапшевешательном» стиле, изложив довольно туманные аргументы с уверенностью, призванной запутать читателя. Вполне возможно, что вы уже заметили ошибки в моих рассуждениях. Основная ошибка состоит в том, что я безоговорочно принял для новой системы ту же интерпретацию, что была верна для прежней системы. Вспомните, что мы тогда остановились на словах «плюс» и «равняется» только потому, что в такой интерпретации символы действовали изоморфно понятиям, с которыми мы их сравнивали. Когда мы изменяем правила системы, этот изоморфизм неизбежно страдает. С этим ничего не поделаешь. Таким образом, проблемы, на которые я жаловался в предыдущих абзацах, могут рассеяться как дым, как только мы найдем подходящую интерпретацию для некоторых символов новой системы. Обратите внимание, что я сказал «некоторых» — совсем не обязательно в каждом случае менять интерпретацию всех символов. Некоторые из них могут сохранить прежнее значение, в то время как другие изменятся.
Снова непротиворечивость
Предположим, например, что мы интерпретируем по-новому лишь символ r, оставляя все остальные символы без изменения; в частности, символ r будет означать «больше или равно». Теперь наши «противоречивые» теоремы -p-r- и -p-r-- звучат совершенно безобидно: «1 плюс 1 больше или равно 1» и «1 плюс 1 больше или равно 2». Мы одновременно избавились от противоречий (1) с окружающим миром и (2) внутри системы. К тому же, наша новая интерпретация значима, в то время как прежняя не имела смысла. Я имею в виду, что она не имела смысла в новой системе — в нашей первоначальной системе pr она работала превосходно. Пытаться же использовать ее в новой системе так же глупо, как использовать интерпретацию «лошадь-яблоко-счастливая» в старой системе pr.