MyBooks.club
Все категории

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда. Жанр: Математика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
192
Читать онлайн
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - описание и краткое содержание, автор Даглас Хофштадтер, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда читать онлайн бесплатно

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать книгу онлайн бесплатно, автор Даглас Хофштадтер

Чудес рекурсии в математике множество, и я не собираюсь здесь говорить о них подробно. Я остановлюсь лишь на двух особо интересных случаях с которыми мне пришлось столкнуться. Речь пойдет о двух графиках. Один из них — часть моих исследований по теории чисел. Другой возник в процессе моей работы над докторской диссертацией по физике твердых тел. Особенно поразительно то, что эти графики находятся в родстве между собой.

Первый (рис. 32) — график функции, которую я называю INT (x). Здесь она дана для x между 0 и 1. Чтобы найти x между любой другой парой чисел n и n+1, вы должны вычислить INT (x-n) и затем снова прибавить n. Как видите, структура этого графика прерывиста. Она состоит из бесконечного числа изогнутых кусочков, уменьшающихся ближе к краям. Если вы посмотрите на любой такой кусочек попристальнее, вы увидите, что перед вами — копия целого графика, только слегка изогнутая! Последствия этого удивительны; одним из них является то, что график INT состоит исключительно из копий себя самого, вложенных одна в другую до бесконечности. Если вы возьмете любую, сколь угодно малую часть графика, у вас окажется полная копия всего графика — на самом деле, бесконечное количество таких копий!


Рис. 32. График функции INT(x). В точках рациональных значений x функция прерывается.

Вы можете подумать, что INT слишком эфемерна, чтобы существовать в действительности, поскольку она состоит лишь из копий самой себя. Ее определение выглядит слишком круговым.

Как начинается эта функция? Где ее «исток»? Это очень интересный вопрос. Важно отметить, что, описывая INT человеку, никогда не видевшему графика этой функции, недостаточно просто сказать, что она состоит из копий себя самой. Вторая, нерекурсивная часть описания должна содержать сведения о том, где эти копии лежат внутри графика и каким образом они деформированы по отношению к нему. Только взятые вместе, эти два аспекта INT определяют ее структуру. Точно так же, чтобы определить числа Фибоначчи, нам понадобились две строчки — одна, определяющая рекурсию, и другая, определяющая дно — первоначальные значения функции. Приведу конкретный пример: если вы замените одно из двух первоначальных значений на 3 вместо 1, то получите совершенно иную последовательность, известную под названием ряда Лукаса:


В определении INT «дну» соответствует рисунок (рис. 33а), состоящий из множества квадратов, указывающих, где находятся копии и каким образом они деформированы. Я называю это «скелетом» INT. Чтобы построить INT на основе скелета, вы должны действовать следующим образом. Сначала для каждого квадрата надо проделать две операции: (1) вложите туда уменьшенную и изогнутую копию скелета, следуя направлению изогнутой линии внутри; (2) сотрите квадрат-рамку и линию внутри него. Закончив этот процесс для каждого квадрата первоначального скелета, вы получите вместо одного большого скелета множество скелетов-«деток». Теперь тот же процесс повторяется уровнем ниже, для каждого скелета-детки. Затем то же самое повторяется еще раз, и еще, и еще… В пределе вы приближаетесь к точному графику INT, хотя никогда его не достигаете. Снова и снова вкладывая скелет графика внутрь себя самого, вы постепенно строите график «из ничего». Но, по сути, «ничто» не было таковым — оно было рисунком.


Рис. 33 а. Скелет, на базе которого путем рекурсивной замены строится INT.


Рис. 33 б. Скелет, на базе которого путем рекурсивной замены строится график G.


Поясним сказанное на еще более впечатляющем примере: вообразите, что вы оставляете рекурсивную часть определения INT, но заменяете начальный рисунок, скелет. Вариант скелета показан на рис. 33б); также и здесь квадраты уменьшаются ближе к углам. Если вы начнете вкладывать этот скелет в себя самого снова и снова, вы получите основной график моей докторской диссертации, который я назвал Графиком G (рис. 34). (На самом деле, там также потребовались определенные сложные деформации, но основной идеей остается «самовложение».) Таким образом, График G — член семьи INT. Это дальний родственник, так как его скелет намного сложнее скелета INT; однако рекурсивные части их определений идентичны, и именно в этом заключается их родство.

Я не буду слишком долго держать вас в неведении относительно происхождения этих замечательных графиков. INT (сокращенное interchange — обмен) связан с проблемой непрерывных дробей, а еще точнее — «последовательностей ETA». В основе INT лежит идея о том, что знаки плюс и минус взаимозаменяемы для определенного вида непрерывных дробей. Отсюда следует то, что INT(INT(x))=x. Когда x рационально, ITN(x) также рациональна; квадратичные значения x дают квадратичные значения INT(x). He знаю, верна ли эта тенденция для высших алгебраических степеней. Другим любопытным свойством INT является то, что в точках рациональных значений x функция разрывается скачками, в то время как в точках иррациональных значений x она непрерывна.


Рис. 34. График G: рекурсивный график, показывающий энергетические полосы для электронов в идеализированном кристалле, помещенном в магнитное поле. a, представляющая силу магнитного поля, изменяется вертикально от 0 до 1.Энергия показана на горизонтальной оси. Сегменты горизонтальных линий — разрешенные энергии электронов.

График G представляет собой сильно упрощенный ответ на вопрос «Какую энергию может иметь электрон в кристалле, помещенном в магнитное поле?» Это очень интересная проблема, так как она совмещает две фундаментальные физические ситуации: электрон в совершенном кристалле и электрон в однородном магнитном поле. Решения этих простых проблем хорошо известны и кажутся почти несовместимыми; тем интереснее выяснить, как природе удается их совместить. Оказывается, что ситуации «электрон в кристалле без магнитного поля» и «электрон в магнитном поле без кристалла» все-таки имеют одну общую черту: в обоих случаях электрон ведет себя периодично во времени. Когда две ситуации совмещаются, отношение их периодов является ключевым параметром, так как оно выражает возможные уровни энергии электронов. Однако свой секрет это отношение выдает только тогда, когда оно записано в форме непрерывной дроби.

График G показывает это распределение. Горизонтальные оси представляют энергию, вертикальные — упомянутое выше отношение временных периодов, которое мы называем «а». Внизу а равняется нулю, наверху — единице. Когда а равняется нулю, магнитное поле отсутствует. Каждый из составляющих график G сегментов — энергетическая полоса, представляющая возможные уровни энергии. Каждая из разномасштабных пустых полос, пересекающих график G, представляет районы запрещенных энергий. Одним из самых удивительных свойств графика G является то, что когда а рациональна (иными словами, может быть представлена в форме p/q), то существует ровно q таких пустых полос (хотя, когда q четно, две из них «целуются» в центре).

Когда а иррационально, полосы сжимаются до точек, бесконечное число которых разбросано по так называемому «множеству Кантора» — еще один рекурсивно определяемый объект, берущий начало в топологии.

У читателя может возникнуть вопрос, можно ли получить такую сложную структуру экспериментальным путем. Честно говоря, я бы сам удивился больше всех, если бы в результате какого-нибудь эксперимента получился График G. График G «физичен» в том смысле, что он указывает, как можно математически подходить к менее идеальным физическим проблемам. Другими словами, График G принадлежит к области теоретической физики, а не указывает физикам-практикам на то, что они могут получить в результате экспериментов. Как-то раз один из моих друзей-агностиков, пораженный бесконечным количеством бесконечностей Графика G, именовал этот график «портретом Бога» — и это совсем не показалось мне богохульством.

Рекурсия на низшем уровне материи

Мы уже встретились с рекурсией в грамматике языков, видели рекурсивные геометрические деревья, тянущие свои ветви в бесконечность, и привели пример рекурсии в физике твердых тел. Теперь давайте взглянем еще на один способ рекурсивного устройства мира. Я имею в виду элементарные частицы: электроны, протоны, нейтроны и крохотные кванты электромагнитного излучения, называемые «фотонами». Мы увидим, что эти частицы в некотором роде «вставлены» друг в друга (это определено со всей строгостью только в релятивистской квантовой механике), и что это положение можно описать рекурсивно — может быть, даже с помощью какой-либо «грамматики».


Даглас Хофштадтер читать все книги автора по порядку

Даглас Хофштадтер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда отзывы

Отзывы читателей о книге ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда, автор: Даглас Хофштадтер. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.