MyBooks.club
Все категории

Саймон Сингх - Великая Теорема Ферма

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Саймон Сингх - Великая Теорема Ферма. Жанр: Математика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Великая Теорема Ферма
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
285
Читать онлайн
Саймон Сингх - Великая Теорема Ферма

Саймон Сингх - Великая Теорема Ферма краткое содержание

Саймон Сингх - Великая Теорема Ферма - описание и краткое содержание, автор Саймон Сингх, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
История загадки, которая занимала лучшие умы мира на протяжении 358 лет

Великая Теорема Ферма читать онлайн бесплатно

Великая Теорема Ферма - читать книгу онлайн бесплатно, автор Саймон Сингх

Выполняя волю Эвариста Галуа, Огюст Шевалье и Альфред Галуа разослали копии рукописи Карлу Гауссу, Карлу Якоби и другим выдающимся математикам, но прошло почти десять лет прежде, чем его работа была оценена по достоинству. Впервые это произошло, когда одну из копий получил в 1846 году Жозеф Лиувилль. Прочитав полученную рукопись, Лиувилль ощутил в ней искру гения и потратил несколько месяцев на то, чтобы разобраться в этих заметках. В конце концов Лиувилль отредактировал мемуары Галуа и опубликовал в своем престижном журнале «Journal de Mathèmatiques pures et appliquées». Многие математики живо откликнулись на эту публикацию, потому что Галуа продемонстрировал полное понимание того, как следует действовать, чтобы найти решения уравнений пятой степени. Сначала Галуа разделил все уравнения пятой степени на два типа: уравнения разрешимые и неразрешимые, а затем для разрешимых уравнений предложил рецепт, как найти решения таких уравнений. Кроме того, Галуа рассмотрел уравнения более высокого порядка, содержащие x6, x7 и т. д., и смог указать, какие из них разрешимы. Его труд стал одним из шедевров математики XIX века.

В предисловии к работам Галуа Лиувилль пустился в рассуждения о том, почему этот молодой математик был отвергнут старшими коллегами и как его, Лиувилля, собственными усилиями Галуа был возрожден: «Гипертрофированное стремление к точности было причиной того дефекта, которого всеми силами следует избегать при изучении абстрактных и загадочных проблем Алгебры. Ясность тем более необходима, чем дальше автор пытается увести читателя от проторенного пути вглубь неизвестной территории. Как говорил Декарт, "при рассмотрении трансцендентальных вопросов нужно быть трансцендентально ясным".

Галуа слишком часто пренебрегал этим предписанием, и мы можем понять, как знаменитые математики своими суровыми мудрыми советами пытались наставить на истинный путь новичка, гениально одаренного, но неопытного. Автор, которого они осудили, был перед ними, преисполненный рвения, деятельный; он мог бы извлечь пользу из данного ему совета.

Но теперь все изменилось. Галуа больше нет с нами! Не будем вдаваться в бесполезную критику; оставим же его недостатки и обратимся к достоинствам…

Мое усердие было вознаграждено, и я испытал необычайное удовлетворение в тот момент, когда, восполнив мелкие пробелы, убедился в правильности метода, с помощью которого Галуа доказал эту прекрасную теорему».

Вычисления Галуа концентрировались вокруг так называемой теории групп — идеи, которую Галуа превратил в мощное оружие, способное решать проблемы, ранее казавшиеся неразрешимыми. С точки зрения математики, группа представляет собой множество элементов, над которыми можно производить некоторую операцию (обычно ее называют сложением или умножением), удовлетворяющую определенным условиям. Важным свойством группы является ее замкнутость относительно этой операции: комбинируя любые два элемента группы с помощью операции, мы получаем другой элемент, также принадлежащий группе.

Например, целые числа образуют группу относительно операции сложения. Комбинируя с помощью операции сложения одно целое число с другим, мы получаем третье целое число, например,

4 + 12 = 16.

Все возможные результаты сложения целых чисел всегда являются целыми числами, и математики, констатируя это обстоятельство, говорят, что «целые числа замкнуты относительно сложения», или «целые числа образуют группу по сложению». Однако, целые числа не образуют группу относительно операции деления, поскольку при делении одного целого числа на другое результат не обязательно будет целым числом, например, 4:12=1/3.

Дробь 1/3 — не целое число, оно выходит за пределы исходного множества целых чисел. Но если рассматривать более широкое множество так называемых рациональных чисел, то замкнутость относительно операции деления восстанавливается: рациональные числа замкнуты относительно деления. Даже после того, как эти слова произнесены, необходимо соблюдать осторожность, так как деление на нуль (элемент множества рациональных чисел) приводит к различным математическим кошмарам. Поэтому точнее было бы утверждение: рациональные числа без нуля замкнуты относительно деления. Во многих отношениях замкнутость аналогична понятию полноты, описанному в предыдущих главах.

Целые числа и рациональные числа, или дроби, содержат бесконечное число элементов, и можно было бы предположить, что чем больше группа, тем больший интерес она вызывает к себе в математике. Но Галуа придерживался философии «чем меньше, тем лучше» и показал, что небольшие тщательно построенные группы могут обладать весьма богатым набором свойств. Вместо того, чтобы воспользоваться бесконечными группами, Галуа начал с конкретного уравнения и построил свою группу из нескольких решений этого уравнения. Именно группы, образованные из решений уравнений пятой степени, позволили Галуа получить результаты об этих уравнениях. Через полтора столетия Уайлс воспользовался теорией Галуа как одной из основ для своего доказательства гипотезы Таниямы-Шимуры.

* * *

Чтобы доказать гипотезу Таниямы-Шимуры, математикам было необходимо показать, что каждое из бесконечного множества эллиптических уравнений может быть поставлено в соответствие с какой-то модулярной формой. Первоначально математики пытались показать, что целая молекула ДНК одного эллиптического уравнения (E-ряд) может быть поставлена в соответствие целой молекуле ДНК (M-ряд) одной модулярной формы. Хотя такой подход вполне разумен, никому не удалось повторить процесс установления такого соответствия для бесконечно многих эллиптических уравнений и модулярных форм.

Уайлс избрал совершенно другой подход к этой проблеме. Вместо того, чтобы пытаться установить соответствие между всеми элементами E-ряда и всеми элементами M-ряда, а затем переходить к следующим рядам, он попытался установить соответствие между одним членом E-ряда и одним членом M-ряда, а затем переходить к следующей паре элементов. Иначе говоря, каждый E-ряд состоит из бесконечной последовательности элементов, своего рода генов, образующих ДНК эллиптического уравнения, и Уайлс хотел показать, что первый ген в каждом E-ряде можно поставить в соответствие первому гену какого-то M-ряда. Затем он доказал бы, что второй член E-ряда может быть поставлен в соответствие второму члену M-ряда, и т. д.

При традиционном подходе мы получили бы бесконечную задачу, состоявшую в том, что даже если бы удалось доказать соответствие между всеми членами каких-то конкретных E- и M-рядов, то и в этом случае осталось бы доказать, что такое соответствие может быть установлено между бесконечно многими остальными E-рядами и M-рядами. Избранная Уайлсом тактика обладала одним большим преимуществом.

Решающее значение имело то обстоятельство, что в методе Уайлса члены в E-рядах обладают естественным упорядочением, поэтому после того, как установлено соответствие между первыми членами (E1=M1), следующим шагом является установление соответствия между вторыми членами (E2 = M2), и т. д.

Именно такой естественный порядок был необходим Уайлсу, чтобы создать доказательство по индукции. Прежде всего Уайлсу было необходимо доказать, что первый элемент E-ряда можно поставить в соответствие первому элементу некоторого M-ряда. Затем ему было необходимо доказать, что если соответствие между первыми элементами рядов установлено, то оно будет установлено и между вторыми, третьими и т. д. элементами. Уайлсу было необходимо опрокинуть первую кость домино и доказать, что любое опрокинутое домино вызовет падение следующего домино.

Первый шаг в осуществлении этой программы был сделан, когда Уайлс понял всю мощь групп Галуа. Чтобы создать такую группу, можно было воспользоваться несколькими решениями уравнения, соответствующего эллиптической кривой. После анализа, на который ушло несколько месяцев, Уайлс доказал, что группы Галуа позволяют прийти к одному несомненному заключению: первый член любого E-ряда действительно может быть поставлен в соответствие с первым членом некоторого M-ряда. Благодаря теории Галуа, Уайлс сумел сделать первый шаг индукции. Следующий шаг требовал от Уайлса найти способ доказать, что если какой-то один член E-ряда поставлен в соответствие соответствующему члену M-ряда, то и следующий элемент E-ряда должен соответствовать следующему элементу M-ряда.


Саймон Сингх читать все книги автора по порядку

Саймон Сингх - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Великая Теорема Ферма отзывы

Отзывы читателей о книге Великая Теорема Ферма, автор: Саймон Сингх. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.