MyBooks.club
Все категории

Жемчужина Эйлера - Дэвид С. Ричесон

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Жемчужина Эйлера - Дэвид С. Ричесон. Жанр: Математика . Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Жемчужина Эйлера
Дата добавления:
9 февраль 2023
Количество просмотров:
200
Читать онлайн
Жемчужина Эйлера - Дэвид С. Ричесон

Жемчужина Эйлера - Дэвид С. Ричесон краткое содержание

Жемчужина Эйлера - Дэвид С. Ричесон - описание и краткое содержание, автор Дэвид С. Ричесон, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

Формула Эйлера для многогранников описывает структуру многих объектов — от футбольных мячей и драгоценных камней до сложных молекул. Но при этом сама формула настолько проста, что ее можно объяснить даже ребенку. В этой книге рассказана история этой важнейшей математической идеи, а попутно приводятся занимательные факты из мира геометрии и из жизни великих математиков. Книгу сопровождают тщательно подобранные примеры и многочисленные иллюстрации.

Жемчужина Эйлера читать онлайн бесплатно

Жемчужина Эйлера - читать книгу онлайн бесплатно, автор Дэвид С. Ричесон
class="subtitle">Касательный вектор к простой замкнутой гладкой кривой на плоскости поворачивается на угол 2π.

Нетрудно заметить связь между теоремой о сумме внешних углов и теоремой о вращающихся касательных. На самом деле можно сформулировать комбинированную теорему, в которой кривая является гладкой всюду, кроме конечного числа крутых поворотов. Автомобиль, движущийся по извилистой дороге, который иногда вынужден делать крутые повороты, к моменту возврата в исходную точку совершит полный оборот на 360°.

Возвращаясь к исходному утверждению, мы можем спросить, как эти теоремы связывают две математические дисциплины. Они показывают, что топология в некотором смысле управляет геометрией. Тополог не может различить многоугольники и простые замкнутые гладкие кривые. Все они в его глазах являются окружностями. Тополог ничего не говорит об углах, прямолинейности, касательных векторах и т. д. Для геометра все многоугольники и все простые замкнутые гладкие кривые различаются, он описывает объекты в терминах вершин, кривизны и других характеристик. Теорема о сумме внешних углов и теорема о вращающихся касательных говорят, что гомеоморфность окружности полностью определяет одно геометрическое свойство — полный угловой недостаток фигуры. Как бы она ни изгибалась, ее полный угловой недостаток равен 2π.

Теперь мы рассмотрим, как обобщить эти две теоремы и получить формулу Декарта для многогранников и теорему об угловом избытке для поверхностей.

Возьмите квадратный лист бумаги, ножницы и клейкую ленту. Разделите бумагу на четыре квадранта и отрежьте один из них (этот кусочек пригодится в дальнейшем). Затем склейте обе стороны, по которым разрезали, — получится уголок прямоугольной коробки (рис. 20.4).

Рис. 20.4. В вершине куба полный угол равен 3π/2

Мы определили угловой недостаток в вершине многоугольника как величину, на которую ломаная отличается от прямой линии. Аналогично определим угловой недостаток телесного угла как величину, которой ему недостает, чтобы стать плоскостью. В нашем примере четыре прямых угла (2π) сходятся в центре листа бумаги, и один из них отрезан (осталось 3π/2). Поэтому угловой недостаток в вершине куба равен 2π — 3π/2 = π/2.

Возьмите еще один квадратный лист бумаги. Как и раньше, разделите его на квадранты. Сделайте один разрез от края к центру (рис. 20.5). Возьмите отрезанный ранее квадратик и приклейте две его стороны к краям разреза сложенного листа бумаги. В результате оказывается, что углов слишком много. Мы получили конфигурацию, напоминающую кирпичную стену, из которой вынут один кирпич. Полный угол при центральной вершине равен 5π/2, т. е. на π/2 больше, чем плоский угол. В этом случае говорят, что имеется угловой недостаток —π/2, или угловой избыток π/2.

У многогранника много вершин, и в каждой из них свой угловой недостаток (или угловой избыток). Для получения полного углового недостатка многогранника нужно сложить угловые недостатки во всех вершинах.

Рис. 20.5. В этой вершине полный угол равен 5π/2

Рассмотрим несколько примеров. В каждой из восьми вершин куба угловой недостаток равен π/2, поэтому полный угловой недостаток равен 4π. Четырьмя гранями тетраэдра являются равносторонние треугольники. Поскольку в каждой вершине сходятся три равносторонних треугольника, угловой недостаток в ней равен 2π — 3(π/3) = π. Всего вершин четыре, поэтому полный угловой недостаток равен 4π. Наконец, рассмотрим невыпуклый многогранник на рис. 20.6: большой куб, из которого вырезан маленький угловой кубик (представьте себе кубик Рубика с вытащенным угловым элементом). В вершинах с метками от 1 до 10 угловой недостаток равен π/2. Вершина 11 «обращена не в ту сторону», но угловой недостаток в ней тоже равен π/2. В оставшихся вершинах (12, 13 и 14) имеет место угловой избыток π/2. Таким образом, полный угловой недостаток равен 11(π/2) + 3(—π/2) = 4π.

Рис. 20.6. В этом невыпуклом многограннике полный угловой недостаток по-прежнему равен 4π

Теперь можно говорить о закономерности и высказать гипотезу о том, что полный угловой недостаток любого многогранника равен 4π. Это впервые заметил Декарт в неопубликованных записках «Об элементах геометрических тел», которые мы обсуждали в главе 9. В третьем предложении этих записок читаем:

Как в плоской фигуре [многоугольнике] все внешние углы, взятые вместе, равны четырем прямым углам [2π], так и в геометрическом теле [многограннике] все внешние телесные углы [угловые недостатки], взятые вместе, равны восьми прямым углам [4π]186.

Как указал Декарт, параллели с теоремой о сумме внешних углов очевидны. Как сумма угловых недостатков многоугольника равна 2π, так и сумма угловых недостатков многогранника равна 4π.

Слегка отличающийся вариант этой теоремы был заново открыт Эйлером и включен в его статьи о формуле для многогранников187. Эйлер доказал, что сумма всех плоских углов многогранника, имеющего V вершин, равна 2π(V — 2). Если формула Декарта обобщает теорему о сумме внешних углов многоугольника, то формула Эйлера — теорему о сумме внутренних углов. Легко видеть, что результаты Эйлера и Декарта эквивалентны. Полный угловой недостаток равен просто 2π V минус сумма всех плоских углов, или 2πV — 2π(V — 2) = 4π.

Разумеется, Эйлер и Декарт рассматривали только выпуклые многогранники. Но оказывается, что после небольшой модификации теорема применима ко всем многогранникам, даже топологически не являющимся сферами. Полный угловой недостаток — это топологический инвариант, имеющий простую связь с эйлеровой характеристикой многогранника.

Формула Декарта

Полный угловой недостаток любого многогранника P равен 2πχ(Р).

Куб, тетраэдр и куб с вырезанным уголком топологически эквивалентны сфере, поэтому их эйлерова характеристика равна 2, а значит, полный угловой недостаток равен 2πχ(Р) = 2π 2 = 4π. В качестве тела, отличного от сферы, рассмотрим многогранный тор, показанный на рис. 20.7. В нем шестнадцать вершин, в восьми из них угловой недостаток равен π/2, а в остальных восьми имеется угловой избыток π/2 (угловой недостаток —π/2). Поэтому полный угловой недостаток равен нулю — эйлеровой характеристике тора. Предлагаем читателю проверить формулу Декарта для бумажного многогранника из приложения A.

Докажем формулу Декарта. Пусть P — многогранник с V вершинами, E ребрами и F гранями, а T — полный угловой недостаток P. Мы должны показать, что T = 2πχ(Р) = 2πV — 2πE + 2πF.

Выберем любую грань многогранника. Предположим, что ее плоские углы равны a1…, an. По теореме о сумме внутренних углов:

a1 +… + an = (n — 2)π.

После перегруппировки членов получаем:

(a1 +… + an) — nπ +2π = 0.

Рис. 20.7. Полный угловой недостаток тора равен нулю

Это равенство можно наглядно представить следующим образом. Если написать —π на каждом ребре грани, величину угла


Дэвид С. Ричесон читать все книги автора по порядку

Дэвид С. Ричесон - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Жемчужина Эйлера отзывы

Отзывы читателей о книге Жемчужина Эйлера, автор: Дэвид С. Ричесон. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.