MyBooks.club
Все категории

Иэн Стюарт - Истина и красота. Всемирная история симметрии.

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Иэн Стюарт - Истина и красота. Всемирная история симметрии.. Жанр: Математика издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Истина и красота. Всемирная история симметрии.
Автор
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
13 февраль 2019
Количество просмотров:
203
Читать онлайн
Иэн Стюарт - Истина и красота. Всемирная история симметрии.

Иэн Стюарт - Истина и красота. Всемирная история симметрии. краткое содержание

Иэн Стюарт - Истина и красота. Всемирная история симметрии. - описание и краткое содержание, автор Иэн Стюарт, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов. Эксцентричный Джироламо Кардано — игрок и забияка эпохи Возрождения, первым решивший кубическое уравнение, гениальный невротик и революционер-неудачник Эварист Галуа, в одиночку создавший теорию групп, горький пьяница Уильям Гамильтон, нацарапавший свое величайшее открытие на каменной кладке моста, и, конечно же, великий Альберт Эйнштейн — судьбы этих неординарных людей и блестящих ученых служат тем эффектным фоном, на котором разворачивается один из самых захватывающих сюжетов в истории науки.

Истина и красота. Всемирная история симметрии. читать онлайн бесплатно

Истина и красота. Всемирная история симметрии. - читать книгу онлайн бесплатно, автор Иэн Стюарт

Мысли об этом занимали его почти всю ночь, а на утро он «поспешил в одну из библиотек, прямо к моменту ее открытия, и там посмотрел в уитгекеровской „Аналитической динамике“, как выглядит скобка Пуассона; оказалось, это было именно то, что требовалось». Его открытие состояло вот в чем: коммутатор двух квантовых матриц равен скобке Пуассона соответствующих классических переменных, умноженной на постоянную, равную ih/(2π). Здесь h — постоянная Планка, i — это √−1, а π — ну, это, конечно, π.

Это было впечатляющее открытие. Оно говорило физикам, как надо превращать классические механические системы в квантовые. Стоящая за этим математика была необычайно элегантна — она соединяла две глубокие, но до того момента никак не связанные теории. На Гайзенберга это произвело впечатление.

Вклад Дирака в квантовую теорию разнообразен, и я выберу лишь одно из высших его достижений — релятивистскую теорию электрона, создание которой относится к 1927 году. К тому времени теоретики, занимавшиеся квантовой физикой, знали, что электроны обладают спином, который представляет собой нечто аналогичное моменту вращения мячика вокруг своей оси, однако характеризуется некоторыми весьма странными свойствами, которые делают эту аналогию далеко не полной. Если взять вращающийся мячик и повернуть систему на полные 360°, то и мяч, и момент его вращения окажутся в тех же положениях, которые они занимали до поворота. Однако если вы сделаете то же самое с электроном, то спин его изменит свой знак. Чтобы спин вернулся в первоначальное положение, поворачивать надо на 720°.

Это в действительности довольно сильно напоминает кватернионы, интерпретация которых как «вращений» пространства включает тот же выверт. На математическом языке, вращения пространства образуют группу SO(3), но соответствующая группа в случае кватернионов, как и в случае электронов, есть SU(2). Эти две группы почти одинаковы, только SU(2) «в два раза больше» — она в некотором смысле построена из двух экземпляров группы SO(3). Такое явление называется «двулистным накрытием», из-за чего вращение на 360° и отвечает вращению на удвоенный угол.

Дирак не использовал кватернионы, да и группами не пользовался. Но в конце 1927 года, к наступлению Рождества, он предложил свои спиновые матрицы, которые играют ту же самую роль. Позднее математики обобщили матрицы Дирака на спиноры, которые оказались очень важными в теории представлений групп Ли.

Спиновые матрицы позволили Дираку сформулировать релятивистскую квантовую модель электрона. Из модели получалось все, ради чего она создавалась, и даже немного больше. Наряду с ожидаемыми решениями с положительной энергией она предсказывала решения с отрицательной энергией. Анализируя это парадоксальное свойство, Дирак в конце концов, отбросив несколько неудачных идей, пришел к концепции «антиматерии» — т.е. к идее о том, что всякая частица имеет соответствующую античастицу с той же массой, но с противоположным зарядом. Античастица электрона представляет собой позитрон; он не был известен, пока Дирак не предсказал его существование.

Законы физики остаются (почти) неизменными, если заменить каждую частицу на ее античастицу — такая операция является симметрией природы. Дирак, на которого теория групп никогда не производила особенно большого впечатления, открыл одну из наиболее пленительных групп симметрии в природе.

После 1935 года и до момента своей смерти (в Таллахаси в 1984 году) Дирак придавал огромное значение математическому изяществу физических теорий и в своей работе использовал этот принцип в качестве основополагающего. То, что не является прекрасным, считал он, не может быть верным. В 1956 году, во время посещения Московского государственного университета, следуя традиции записывать мудрые слова на доске, дабы они сохранились для потомства, он написал: «Физический закон должен обладать математической красотой». И он говорил о «высоком математическом качестве» природы. Однако похоже, что теорию групп он никогда не считал прекрасной, быть может, из-за того, что подход физиков к группам, как правило, включает в себя громоздкие вычисления. Лишь математики, как представляется, оказались настроенными на изысканную красоту групп Ли.


Прекрасна она или нет, но благодаря сыну одного кожевника теория групп вскоре заняла свое место среди основных предметов, которые следовало изучать всякому подающему надежды квантовому теоретику.

На рубеже двадцатого столетия кожевенное дело было серьезным занятием (да, собственно, таким и остается). В те дни, однако, даже небольшое предприятие по дублению и продаже кожи могло приносить своему хозяину очень неплохой доход. Хорошим примером такого хозяина был Антал Вигнер, возглавлявший сыромятную мастерскую. Он и его жена Эрсебет были еврейского происхождения, однако не практиковали иудаизм. Они жили в государстве, которое тогда называлось Австро-Венгрией, в городе Пешт. После соединения с соседней Будой он превратился в современный Будапешт — столицу Венгрии.

Второй из трех их сыновей, Йена Паал Вигнер, родился в 1902 году и в возрасте от пяти до десяти лет обучался дома, у частного учителя. Вскоре после начала школьных занятий у Йены обнаружили туберкулез и отправили на лечение в австрийский санаторий. Он пробыл там шесть недель, прежде чем выяснилось, что диагноз неверный. (Окажись он правильным, мальчик, скорее всего, не дожил бы до зрелого возраста.)

Поскольку мальчика заставляли почти постоянно лежать, он занимал себя решением математических задач, просто чтобы убить время. «Мне приходилось дни напролет лежать в шезлонге, — писал он позднее, — и я отчаянно пытался придумать, как построить треугольник по трем заданным высотам». Высоты треугольника — это три линии, которые проходят через вершину и пересекают противоположную сторону под прямым углом. Если треугольник дан, то найти его высоты легко. Решить обратную задачу определенно труднее.

После выписки из санатория Йена продолжал размышлять о математике. В 1915 году он поступил в Лютеранскую гимназию в Будапеште, где в то время уже учился другой мальчик, которому предстояло стать одним из ведущих мировых математиков, — Янош (позднее — Джон) фон Нейман. Однако из знакомство оставалось лишь весьма поверхностным, поскольку фон Нейман предпочитал держаться особняком.

В 1919 году Венгрию наводнили коммунисты, и Вигнеры бежали в Австрию, вернувшись в Будапешт позднее, в том же году, когда коммунистов оттуда выбили. Все семейство перешло в лютеранство, но на Йену это большого влияния не оказало — как он говорил позднее, потому что он был «лишь умеренно религиозен». В 1920 году Йена закончил школу одним из лучших в классе. Он намеревался стать физиком, но отец хотел, чтобы он вступил в семейный кожевенный бизнес. Поэтому вместо того, чтобы получить диплом по физике, Йена стал изучать химическую инженерию: отец полагал, что она будет способствовать бизнесу. Он поступил на первый курс Будапештского технического института, а потом перешел в Высшую техническую школу в Берлине. В конце концов он стал проводить большую часть ценного времени в химической лаборатории, где ему нравилось, и меньшую часть — на теоретических занятиях.

Тем не менее Йена не оставлял мыслей о физике. Берлинский университет находился неподалеку, а кого там можно было увидеть, как не Планка и Эйнштейна вкупе с другими знаменитостями? Йена не преминул воспользоваться этой географической близостью и стал ходить на лекции бессмертных. Он закончил свою диссертацию об образовании и распаде молекул и, как и планировалось, начал работать на кожевенном заводе. Как и следовало ожидать, идея оказалась не слишком удачной. «Дела мои в дубильне шли не очень хорошо… Я чувствовал себя там не в своей тарелке… У меня не было ощущения, что это моя жизнь». Его жизнью были математика и физика.

В 1926 году с ним связался кристаллограф из Института Кайзера Вильгельма, которому требовался ассистент. Обязанности соединяли в себе в химическом контексте оба основных интереса Вигнера. Эта работа оказала огромное влияние на его карьеру, а тем самым и на развитие ядерной физики, поскольку познакомила Вигнера с теорией групп — математикой симметрии.

Первые существенные применения теории групп к физике состояли в классификации всех 230 возможных кристаллических структур. Вигнер писал: «Я получил письмо от кристаллографа, который хотел найти ответ на вопрос, почему положения, которые занимают атомы в кристаллической решетке, соответствуют осям симметрии. Кроме того, он сказал мне, что это должно иметь отношение к теории групп и что мне следует прочитать книгу по теории групп, а после этого найти ответ и сообщить ему».

Возможно, Антал Вигнер был в не меньшем ужасе, чем его сын, от сомнительных успехов последнего в области кожевенного дела, а потому позволил ему стать асситентом кристаллографа. Йена начал с чтения нескольких статей Гайзенберга по квантовой теории и развил теоретический метод вычисления спектра атома с тремя электронами. Он также понял, что этот метод может стать невероятно сложным, когда число электронов превысит три. В этот момент он обратился за советом к своему старому знакомому фон Нейману, который предложил ему почитать о теории представлений групп. Эта область математики в избытке содержала известные в то время алгебраические концепции и сложные методы, в особенности — матричную алгебру. Однако благодаря своим занятиям кристаллографией и близкому знакомству с основным на тот момент учебником по алгебре — Lehrbuch der Algebra Генриха Вебера — Вигнер преодолел матрицы без проблем.


Иэн Стюарт читать все книги автора по порядку

Иэн Стюарт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Истина и красота. Всемирная история симметрии. отзывы

Отзывы читателей о книге Истина и красота. Всемирная история симметрии., автор: Иэн Стюарт. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.