MyBooks.club
Все категории

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда. Жанр: Математика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
192
Читать онлайн
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - описание и краткое содержание, автор Даглас Хофштадтер, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда читать онлайн бесплатно

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать книгу онлайн бесплатно, автор Даглас Хофштадтер

В своих пяти постулатах Пеано хотел выразить сущность натуральных чисел. Математики обычно считают, что ему это удалось; однако это не уменьшает важности вопроса «каким образом можно отличить истинное высказывание о натуральных числах от ложного?» Ответа на этот вопрос математики ищут в формальных системах, подобных ТТЧ. Вы найдете в ТТЧ влияние Пеано, поскольку все его постулаты так или иначе вошли в эту систему.

Новые правила ТТЧ: спецификация и обобщение

Мы подошли к новым правилам ТТЧ. Многие из них позволят нам забраться внутрь этой системы и поменять внутреннюю структуру ее атомов. В этом смысле эти правила имеют дело с «микроскопическими» особенностями строчек в большей степени, чем правила исчисления высказываний, обращающиеся с атомами как с неделимыми. Например, было бы хорошо, если бы мы могли выделить строчку ~S0=0 из первой аксиомы. Для этого нам понадобилось бы правило, позволяющее опустить общий квантор и при необходимости одновременно поменять внутреннюю структуру остающейся строчки. Вот это правило:

ПРАВИЛО СПЕЦИФИКАЦИИ. Предположим, что u — переменная, встречающаяся внутри строчки x. Если строчка Au:x  — теорема, то x — тоже теорема, как и все строчки, получающиеся из x путем замены и на любой (один и тот же) терм.

(Ограничение: Терм, заменяющий и, не должен содержать никакой переменной, квалифицированной в x.)

Правило спецификации позволяет нам выделить нужную строчку из Аксиомы

1. Это одноступенчатая деривация:

Aa:~Sa=0  аксиома 1

~S0=0  спецификация

Обратите внимание, что правило спецификации позволяет некоторым формулам, содержащим свободные переменные (то есть, открытым формулам), стать теоремами. Например, следующие строчки также могут быть выведены из аксиомы 1 при помощи спецификации:

~Sa=0

~S(c+SS0)=0

Существует еще одно правило, правило обобщения, которое позволяет нам снова ввести квантор общности в теоремы с переменными, ставшими свободными в результате спецификации. Например, действуя на строчку низшего порядка, обобщение дало бы:

Ac:~S(c+SS0)=0

Обобщение уничтожает сделанное спецификацией, и наоборот. Обычно обобщение применяется после того, как были сделаны несколько промежуточных шагов, трансформировавших открытую формулу разными способами. Далее следует точная формулировка этого правила:

ПРАВИЛО ОБОБЩЕНИЯ: Предположим, что x — теорема, в которой встречается свободная переменная u. Тогда Au:x — тоже теорема.

(Ограничение: к переменным, которые встречаются в свободном виде в посылках фантазий, обобщение неприложимо.)

Вскоре я ясно покажу, почему эти два правила нуждаются в ограничениях. Кстати, это обобщение — то же самое, о котором я упомянул в главе II в Эвклидовом доказательстве бесконечного количества простых чисел. Уже отсюда видно, как правила, манипулирующие символами, начинают приближаться к типу рассуждений, используемых математиками.

Квантор существования

Два предыдущих правила объяснили нам, как можно убрать квантор общности и вернуть его на место; следующие два правила покажут, как обращаться с кванторами существования.

ПРАВИЛО ОБМЕНА: Представьте, что u — переменная. Тогда строчки Au:~ и ~Eu: взаимозаменимы везде внутри системы.

Давайте, например, применим это правило к аксиоме 1:

Aa:~Sa=0  аксиома 1

~Ea:Sa=0  обмен

Кстати, вы можете заметить, что обе эти строчки — естественный перифраз в ТТЧ высказывания «Нуль не следует ни за одним из натуральных чисел.» Следовательно, хорошо, что они могут быть с легкостью превращены одна в другую.

Следующее правило еще более интуитивно. Оно соответствует весьма простому типу рассуждений, который мы употребляем, переходя от утверждения «2 — простое число» к утверждению «существует простое число.» Название этого правила говорит само за себя:

ПРАВИЛО СУЩЕСТВОВАНИЯ: Предположим, что некий терм (могущий содержать свободные переменные), появляется один или много раз в теореме. Тогда каждый (или несколько, или все) из этих термов может быть заменен на переменную, которая больше нигде в теореме не встречается, и предварен соответствующим квантором существования.

Давайте применим, как обычно, это правило к аксиоме 1:

Aa:~Sa=0  аксиома 1 

Eb:Aa:~Sa=b  существование

Вы можете поиграть с символами и при помощи данных правил получить теорему: ~Ab:Ea:Sa=b

Правила равенства и следствия

Мы привели правила, объясняющие, как обращаться с кванторами — но пока ни одно из них не сказало нам, как обращаться с символами «=» и «S». Сейчас мы это сделаем; в следующих правилах r, s и t — произвольные термы.

ПРАВИЛА РАВЕНСТВА:

СИММЕТРИЯ: Если r = s — теорема, то sr также является теоремой.

ТРАНЗИТИВНОСТЬ: Если r = s и s = t — теоремы, то r = t также является теоремой.

ПРАВИЛА СЛЕДОВАНИЯ:

ДОБАВЛЕНИЕ S: Если r = t — теорема, то Sr = St также является теоремой.

ВЫЧИТАНИЕ S: Если Sr = St — теорема, то r = t также является теоремой.

Теперь у нас есть правила, которые могут дать нам фантастическое разнообразие теорем. Например, результатом следующих дериваций являются фундаментальные теоремы:

(1) Aa:Ab:(a+Sb)=S(a+b)     аксиома 3

(2) Ab:(S0+Sb)=S(S0+b)      спецификация (S0 для а)

(3) (S0+S0)=S(S0+0) спецификация (0 для b)

(4) Aa:(a+0)=a     аксиома 2

(5) (S0+0)=S0     спецификация (S0 для а)

(6) S(S0+0)=SS0    добавление S

(7) (S0+S0)=SS0    транзитивность (строчки 3,6)

*****

(1) Aa:Ab:(a*Sb)=((a*b)+a)    аксиома 5

(2) Ab:(S0*Sb)=((S0*b)+S0)    спецификация (S0 для а)

(3) (S0*S0)=((S0*0)+S0)      спецификация (0 для b)

(4) Aa:Ab:(a+Sb)=S(a+b)    аксиома 3

(5) Ab:((S0*0)+Sb)=S((S0*0)+b спецификация ((S0*0) для а)

(6) ((S0*0)+S0)=S((S0*0)+0)    спецификация (0 для b)

(7) Aa:(a+0)=a         аксиома 2

(8) ((S0*0)+0)=(S0*0)       спецификация ((S0*0) для а)

(9) Aa:(a*0)=0         аксиома 4

(10) (S0*0)=0         спецификация (S0 для а)

(11) ((S0*0)+0)=0                   транзитивность (строчки 8,10)

(12)  S((S0*0)+0)=S0      добавление S

(13)  ((S0*0)+S0)=S0      транзитивность (строчки 6,12)

(14)  (S0*S0)=S0                      транзитивность (строчки 3,13)


Нелегальные упрощения

Возникает интересный вопрос: «Каким образом мы можем вывести строчку 0=0?» Кажется, что очевидным способом было бы сначала вывести строчку Aa:a=a и затем использовать спецификацию. Как вы думаете, где ошибка в нижеследующем «выводе» Aa:a=a... Можете ли вы ее исправить?

(1) Aa:(a+0)=a   аксиома 2

(2) Aa:a=(a+0)   симметрия

(3) Aa:a=a транзитивность (строчки 2,1)

Я привел это маленькое упражнение, чтобы указать на следующий простой факт: при манипуляции хорошо знакомыми символами, такими, как «=», мы не должны торопиться. Мы должны следовать правилам, а не нашему знанию пассивных значений символов. (Тем не менее, это знание весьма ценно, чтобы помочь нам направить вывод по верному пути.)

Почему спецификация и общность ограничены

Давайте выясним, почему и спецификация, и общность нуждаются в ограничениях Взгляните на следующие две деривации; в каждой из них одно из ограничений нарушено. Обратите внимание, к каким печальным последствиям это привело.

(1)  [                    проталкивание

(2)     a=0             посылка

(3)     Aa:a=0        обобщение (ложно!)

(4)     Sa=0           спецификация

(5)  ]                   выталкивание

(6)  <a=0эSa=0>      правило фантазии

(7)  Aa:<a=0эSa=0 обобщение

(8)  <0=0эS0=0>      спецификация

(9)  0=0               предыдущая теорема

(10) S0=0             отделение (строчки 9,8)

Это первое из печальных последствий. Другое получается из неверной спецификации.

(1) Aa:a=a предыдущая теорема

(2) Sa=Sa спецификация

(3) Eb:b=Sa существование

(4) Aa:Eb:b=Sa обобщение

(5) Eb:b=Sb спецификация (ложно!)

Теперь вы убедились, почему необходимы ограничения. Вот простая задачка: переведите (если вы этого уже не сделали раньше) четвертый постулат Пеано в нотацию ТТЧ, и затем выведите эту строчку как теорему.

Чего-то не хватает

Если вы поэкспериментируете с теми правилами и аксиомами ТТЧ, которые я привел до сих пор, вы обнаружите, что возможно вывести следующую пирамидальную семью теорем (множество строчек, отлитых из одной формы и отличающихся только тем, что символы чисел 0, S0, SS0, и так далее, идут по нарастающей):

(0+0)=0

(0+S0)=S0

(0+SS0)=SS0

(0+SSS0)=SSS0

(0+SSSS0)=SSSS0

и так далее.

Каждая из теорем этой семьи может быть выведена из предыдущей теоремы с помощью коротенькой, всего лишь в пару строчек, деривации. Результатом является нечто вроде каскада теорем, каждая из которых вызывает к жизни следующую. (Эти теоремы напоминают теоремы pr, где средняя и правая группы тире возрастали одновременно.)


Даглас Хофштадтер читать все книги автора по порядку

Даглас Хофштадтер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда отзывы

Отзывы читателей о книге ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда, автор: Даглас Хофштадтер. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.