MyBooks.club
Все категории

Александр Соловьев - ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Александр Соловьев - ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ. Жанр: Математика издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
13 февраль 2019
Количество просмотров:
198
Читать онлайн
Александр Соловьев - ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ

Александр Соловьев - ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ краткое содержание

Александр Соловьев - ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ - описание и краткое содержание, автор Александр Соловьев, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ читать онлайн бесплатно

ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ - читать книгу онлайн бесплатно, автор Александр Соловьев

В практическом плане семантикой вынуждено интересоваться теоретическое программирование. А в нем, кроме просто семантики, есть и операционная, и денотационная, и процедуральная и т.д. и т.п. семантики…

Еще лишь упомянем апофеоз – ТЕОРИЮ КАТЕГОРИЙ, которая довела семантику до формального малопонятного синтаксиса, где смысл уже настолько простой – разложенный по полочкам, что до него простому смертному совсем невозможно докопаться… Это для избранных.


Так чем же занимается логика? Хотя бы в самой классической ее части? Логика занимается только тем, чем она занимается. (А это она определяет предельно строго). Главное в логике – это строго определиться! Задать аксиоматику. А дальше логические выводы должны быть(!) в значительной степени автоматическими… Другое дело рассуждения по поводу этих выводов! Но эти рассуждения уже вне рамок логики! Поэтому в них требуется строгий математический смысл!


Может показаться, что это простая словесная эквилибристика. НЕТ! В качестве примера некоторой логической (аксиоматической) системы возьмем известную игру 15. Зададим (перемешаем) начальное расположение квадратных фишек. Далее игрой (логическим выводом!), а конкретно – перемещением фишек на свободное место, может заниматься некое механическое устройство, а вы можете терпеливо смотреть и радоваться, когда в результате возможных передвижек в коробочке сложится последовательность от 1 до 15. Но никто не запрещает контролировать механическое устройство и подсказывать ему, ИСХОДЯ ИЗ здравого СМЫСЛА правильные перемещения фишек, чтобы ускорить процесс. А может быть даже доказать, используя для логических рассуждений, например, такой раздел математики, как КОМБИНАТОРИКА, что при данном начальном расположении фишек получить требуемую финальную комбинацию невозможно вообще!


Не больше здравого смысла присутствует и в той части логики, которую называют ЛОГИЧЕСКОЙ АЛГЕБРОЙ. Здесь вводятся ЛОГИЧЕСКИЕ ОПЕРАЦИИ и определяются их свойства. Как показала практика, в некоторых случаях законы этой алгебры могут соответствовать логике жизни, а в некоторых нет. Из за такого непостоянства законы логики нельзя считать законами с точки зрения практики жизни. Их знание и механическое использование может не только помогать, но и вредить. Особенно психологам и юристам. Ситуация осложняется тем, что наряду с законами алгебры логики, которые то соответствуют, то не соответствуют жизненным рассуждениям, есть логические законы, которые часть логиков категорически не признают. Это относится прежде всего к так называемым законам ИСКЛЮЧЕННОГО ТРЕТЬЕГО и ПРОТИВОРЕЧИЯ. Более подробно о них поговорим потом.

Лекция 7. ОПЕРАЦИИ НАД ВЫСКАЗЫВАНИЯМИ

Обычно математическую логику начинают изучать с АЛГЕБРЫ ВЫСКАЗЫВАНИЙ и вспоминают при этом Дж. Буля, отца Лилиан Войнич, написавшей роман «Овод». А сам Буль, как незакомлексованный математической эрудицией любитель, пытался придумать математику, которая бы описывала мыслительные процессы. Собственно, с его «алгебры» и ведут историю современной математической логики.

Кстати, многие математики эту алгебру не считают логикой.

Под ВЫСКАЗЫВАНИЕМ понимают повествовательное предложение, относительно которого можно сказать, истинно оно или ложно. Например, «Волга впадает в Каспийское море», «Квадрат гипотенузы равен сумме квадратов катетов», «Наполеон родился в Кудымкаре». Здесь два первых высказывания истинны, а третье – ложно. Разумеется, жизнь и тут иногда создает проблемы. Так, про высказывание насчет Волги можно сказать, что оно истинное, если ЗНАТЬ этот факт из географии. Мне, например, пришлось как-то в Америке рассказывать одному бизнесмену, что далеко от США есть такая большая река – Волга… Да и про квадрат гипотенузы не все могут высказаться определенно… Но договоримся, недоучек не принимать в расчет. Или еще проще, чтобы не утонуть в несущественных для данного обсуждения мелочах, будем считать высказываниями повествовательные предложения, истинность которых может установить «высший разум».

Но этим проблема не исчерпывается. Повествовательное предложение «Я лгу» не является высказыванием, поскольку если оно истинно (то есть я действительно лгу) – значит я не лгу, а говорю правду! И наоборот… Это пример ЛОГИЧЕСКОГО ПАРАДОКСА.

Логические парадоксы не относятся к высказываниям. К высказываниям не относятся также вопросительные и восклицательные (т.е. неповествовательные) предложения и определения. Говорить об истинности или ложности определений бессмысленно. Определение есть соглашение о названии. Например, «Назовем эту музыку гимном». И все тут!…

Для того, чтобы не писать "истина" и "ложь" ("true" и "false") часто используют лишь начальные буквы этих слов. А еще чаще просто "1" и "0".

А теперь вернемся к самому существенному. Логика высказываний не занимается (и даже не интересуется) СМЫСЛОМ высказываний. Так что в этом смысле логику можно считать БЕССМЫСЛИЦЕЙ! Один из логиков-классиков уподобил алгебру логики рентгену, который, просвечивая высказывание, оставляет математику для рассмотрения только его истинность.

В алгебре высказываний можно обойтись двумя-тремя операциями, хотя обычно рассматривают больше. Операцию ДИЗ'ЮНКЦИЯ называют еще "логическим или". Если два высказывания соединить диз'юнкцией, то получится сложное высказывание которое истинно, если истинно хотя бы одно из входящих в него высказываний. То есть следует уточнить, что это "неисключающее или". Например, «Мы любим пиво или мы любим мороженое» истинное сложное высказывание, поскольку хотя бы одно из входящих в него элементарных высказываний истинно. А возможно, и оба. Представить же себе живое существо, которое не любит и пиво, и мороженое, не позволяет фантазия.

Операцию КОН'ЮНКЦИЯ называют еще "логическим и". Сложное высказывание будет истинно, если истинны оба входящих в него высказывания.

Операция ОТРИЦАНИЕ – "логическое не" – истинное высказывание превращает в ложное и наоборот.

Пожалуй, самая интригующая операция – это ИМПЛИКАЦИЯ или "логическое если…, то". Например, «Если Наполеон родился в Кудымкаре, то газ при нагревании сужается». Это, кстати, истинное высказывание! Нет причин считать его ложным. Единственная ситуация, когда импликация ложна, это когда посылка (часть «если») истинна, а следствие (часть «то») ложна.

Еще интереснее с точки зрения здравого смысла то, что импликацию иногда (не совсем корректно по иным причинам!) называют операцией логического следования, хотя наш пример показывает, что высказывания могут логически не следовать одно из другого, более того, могут не иметь между собой никакой логической связи. Напомним, импликация, как и другие операции, берет в расчет только истинность входящих в нее высказываний.

«Если Волга впадает в Каспийское море, то 2 + 2 = 4» истинное высказывание.

«Если Волга впадает в Каспийское море, то 2 + 2 = 5» ложное высказывание.

Хотя оба эти «логические рассуждения» с точки зрения здравого рассуждения одинаково бессмысленны.


Есть также ЛОГИЧЕСКАЯ ЭКВИВАЛЕНТНОСТЬ или "тогда и только тогда« (кстати, воспользовавшись»американским приемом", можно записать короче – "ттогда"). Результирующее сложное высказывание истинно, если одновременно истинны или ложны оба входящих в него высказывания.

Назовем еще одну операцию, ШТРИХ ШЕФФЕРА или логическое "и-не". Результат этой операции равносилен последовательному применению операций кон'юнкции и отрицания. Соответственно, результирующее высказывание будет ложным, только если входящие в него высказывания одновременно истинны. Штрих Шеффера – это операция замечательная тем, что ее одной (необходимое количество раз примененной) достаточно, чтобы записать любое сложное высказывание.

При использовании логики для проектирования логических схем, например отдельных фрагментов процессора, первоначально эксплуатировали аналогию с релейными схемами. Операция диз'юнкции ("или") соответствует параллельному подключению контактов реле, кон'юнкции ("и") – последовательному. Операция отрицания ("не") моделируется нормально замкнутым контактом реле. То есть контакт размыкается при срабатывании реле. Разумеется, все это реализовывалось в полупроводниковом «модульном» варианте. Тогда достаточно было выпустить, например, модули типа «и-не», чтобы на них реализовать любую схему. (А сам процессор был размером со шкаф, но не по вине логики).


Александр Соловьев читать все книги автора по порядку

Александр Соловьев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ отзывы

Отзывы читателей о книге ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ, автор: Александр Соловьев. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.