MyBooks.club
Все категории

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда. Жанр: Математика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
192
Читать онлайн
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - описание и краткое содержание, автор Даглас Хофштадтер, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда читать онлайн бесплатно

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать книгу онлайн бесплатно, автор Даглас Хофштадтер

В картине «Вербум» (рис. 149) противоположности превращены в единство на нескольких уровнях. Двигаясь по кругу, мы видим постепенные превращения черных птиц — в белых птиц — в белых рыб — в черных жаб — в белых жаб — в черных птиц… После шести шагов мы оказались опять в начале! Не примирение ли это дихотомии белого и черного? Или «трихотомии» птиц, рыб и жаб? Или это — шестиступенчатое единство, сделанное из противопоставления четности двух и нечетности трех? В музыке шесть нот одинаковой длительности создают ритмическую двусмысленность: две группы по три ноты, или три группы по две? Эта двусмысленность имеет свое название: гемиола. Шопен был мастером гемиолы; см. его «Вальс» оп. 42, или «Этюд» оп. 25, номер 2. У Баха это «Темпо ди Менуетто» из клавишной партитуры номер 5 или удивительный финал соль минорной «Сонаты для скрипки соло».

Когда мы приближаемся к центру гравюры «Вербум», различия постепенно стираются, и к концу остается не три, не две, но одна единственная суть: Вербум — слово, сверкающее во всем блеске, возможно, символ Просветления. Ирония в том, что «вербум» не только является словом, но и означает «слово» — не слишком-то совместимое с дзеном понятие. С другой стороны, «вербум» — единственное слово в картине. Мастер дзена Тозан однажды сказал «Вся „Трипитака“ может быть выражена в одной букве.» («Трипитака» или «Три корзины» - это полный текст священных книг буддизма.) Интересно, какой декодирующий механизм понадобился бы, чтобы извлечь три корзины из одной буквы? Может быть, механизм с двумя полушариями?


Рис. 53. М. К. Эшер. «Три сферы II» (литография, 1946).

Сеть Индры

Наконец, давайте взглянем на «Три сферы II»; кажется, что каждая часть мира здесь содержит все остальные и содержится в них сама: письменный стол отражает шары на его поверхности, шары отражают друг друга, а также стол, рисунок, их изображающий, и самого художника. Эта литография лишь намекает на бесконечное взаимодействие всех вещей — однако этого намека вполне достаточно. Буддистская аллегория «Сеть Индры» описывает бесконечную сеть, нити которой пронизывают всю вселенную: горизонтальные нити протянуты в пространстве, вертикальные — во времени. Каждая точка пересечения — это индивидуум, и каждый индивидуум — это стеклянная сфера. Великий свет «Абсолютного существа» освещает каждую стеклянную сферу и проникает сквозь нее; более того, каждая сфера отражает не только свет каждой другой сферы в сети, но и каждое отражение каждого отражения во вселенной.

Этот образ напоминает мне о ренормализованных частицах: в каждом электроне заключены виртуальные фотоны, позитроны, нейтрино, муоны…; в каждом фотоне — виртуальные электроны, протоны, нейтроны, пионы…; в каждом пионе…

Затем на ум приходит другая картина: люди, каждый из которых отражен в голове многих других, которые, в свою очередь, отражены в уме кого-то другого, и так далее.

Обе эти картины могут быть представлены коротко и элегантно с помощью Увеличенных Схем Перехода. В случае частиц, у нас будет отдельная схема для каждой категории частиц; в случае людей — отдельная схема для каждого человека. Каждая из них будет вызывать много других, таким образом создавая виртуальное облако УСП вокруг каждой УСП. Вызов одной из них приведет к вызову других, и этот процесс может идти как угодно долго, пока мы не достигнем поверхности.

Мумон о МУ

Завершим нашу короткую экскурсию в дзен еще одним обращением к Мумону. Вот его комментарий к МУ Джошу:[29]

Чтобы понять дзен, надо преодолеть барьер патриархов. Просветление всегда приходит после того, как преграждается дорога мысли. Если вы не преодолели барьера патриархов или если дорога вашей мысли не преграждена, то что бы вы не думали и что бы вы не делали, это будет лишь призрачная путаница. Вы можете спросить: «Что такое барьер патриархов?» Это лишь одно слово: «МУ».

Это барьер дзена. Если вы его преодолеете, то встретитесь с Джошу лицом к лицу. Тогда вы сможете работать плечом к плечу со всеми патриархами. Не чудесно ли это?

Если вы хотите преодолеть этот барьер, вы должны до мозга костей проникнуться вопросом: «Что такое МУ?» и размышлять об этом день и ночь. Не думайте, что это — обычное отрицание и означает ничто. Это не пустота, не противоположность существованию. Если вы действительно хотите преодолеть этот барьер, вы должны чувствовать себя так, словно ваш рот наполнен расплавленным металлом, который вы не можете не проглотить, ни выплюнуть.

Тогда исчезнет ваше предыдущее, меньшее знание. Как плод зреет по осени, так ваша объективность и субъективность естественно сольются в одно. Это похоже на немого, увидевшего сон: он знает о нем, но не может рассказать его.

Когда он достигнет этого состояния, скорлупа его эго разобьется и он сможет трясти небеса и двигать землю. Он станет подобен великому воину с острым мечом. Если Будда встанет на его дороге, он рассечет его своим мечом; если патриарх будет чинить ему препятствия, он убьет его; он будет свободен в своем рождении и смерти. Он сможет войти в любой мир, как в свой собственный дом. В этом коане я скажу вам, как этого добиться:

Сконцентрируйте всю вашу энергию на МУ и не отвлекайтесь ни на миг. Когда вы войдете в МУ, не позволяя себе останавливаться, вы станете словно свеча, своим пламенем освещающая всю вселенную.

От Мумона к головоломке MU

С головоломных высот МУ Джошу спустимся теперь к прозаическому MU Хофстадтера… Я знаю, что вы уже пробовали сконцентрировать на нем всю вашу энергию, когда вы читали главу I. Сейчас я отвечу на поставленный в ней вопрос:

Обладает ли MU природой теоремы?

Ответ на этот вопрос — не ускользающее MU, но полновесное НЕТ. Чтобы показать это, мы воспользуемся привилегиями дуалистического, логического мышления.

В главе I мы сделали два важных наблюдения:

(1) что сложность головоломки MU зависит от взаимодействия удлиняющих и укорачивающих правил;

(2) что тем не менее есть надежда решить эту задачу, пользуясь достаточно сложным орудием: теорией чисел.

 В главе I мы не стали подробно анализировать головоломку MU с этой точки зрения; теперь пришло время это сделать. Скоро мы увидим, как второе наблюдение (вынесенное за пределы незначительной системы MIU) стало одним из самых плодотворных открытий математики и как оно изменило взгляд математиков на их предмет.

Для удобства я повторю здесь основные положения системы MIU:

СИМВОЛЫ: М, I, U.

АКСИОМА: MI

ПРАВИЛА:

I. Если хI — теорема, то xIU — также теорема.

II. Если Mx — теорема, то Mхх — также теорема.

III. В любой теореме III может быть заменено на U.

IV. UU может быть вычеркнуто из любой теоремы.

Мумон показывает нам, как решить головоломку MU

Согласно приведенным выше наблюдениям, MU — не более как головоломка о натуральных числах, одетая в типографский костюм. Переведя ее в область теории чисел, мы смогли бы найти ее решение. Давайте поразмыслим над словами Мумона, сказавшего: «Если у кого-нибудь из вас — один глаз, тот заметит ошибку учителя.» Но почему важно иметь именно один глаз?

Если вы попробуйте подсчитать количество I в теоремах, то вскоре заметите, что оно никогда не равняется 0. Иными словами, кажется, что сколько бы мы не удлиняли и не сокращали, нам никогда не удается избавиться от всех I. Будем называть количество I в каждой строчке величиной I данной строчки. Заметьте, что величина I аксиомы MI1. Можно доказать не только то, что величина I не может равняться 0, но и то, что величина I не может делиться на 3.

Для начала заметьте, что правила I и IV совершенно не затрагивают величины I. Так что нам придется иметь дело только с правилами II и III. Правило III уменьшает величину I ровно на 3. После приложения этого правила величина I результата могла бы делиться на 3 — но только в том случае, если бы величина I изначальной строчки тоже делилась на 3. Короче, правило III никогда не создает числа, делящегося на 3, «из воздуха». Оно может сделать это лишь тогда, когда такое число уже имеется в начале. То же самое верно для правила II, которое удваивает величину I. Это происходит потому, что, если 2n делится на 3, то, поскольку 2 не делится на 3, то на 3 должно делиться n (простой факт теории чисел). Ни правило II, ни правило III не могут создать делящегося на 3 числа из ничего.


Даглас Хофштадтер читать все книги автора по порядку

Даглас Хофштадтер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда отзывы

Отзывы читателей о книге ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда, автор: Даглас Хофштадтер. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.