MyBooks.club
Все категории

Питер Эткинз - Десять великих идей науки. Как устроен наш мир.

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Питер Эткинз - Десять великих идей науки. Как устроен наш мир.. Жанр: Математика издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Десять великих идей науки. Как устроен наш мир.
Издательство:
неизвестно
ISBN:
-
Год:
неизвестен
Дата добавления:
13 февраль 2019
Количество просмотров:
225
Читать онлайн
Питер Эткинз - Десять великих идей науки. Как устроен наш мир.

Питер Эткинз - Десять великих идей науки. Как устроен наш мир. краткое содержание

Питер Эткинз - Десять великих идей науки. Как устроен наш мир. - описание и краткое содержание, автор Питер Эткинз, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.

Десять великих идей науки. Как устроен наш мир. читать онлайн бесплатно

Десять великих идей науки. Как устроен наш мир. - читать книгу онлайн бесплатно, автор Питер Эткинз

Наша история начинается с человека, решившего измерять поверхность Земли, осознаваемую тогда в качестве арены действия. На самом деле, они начали мерить не Землю, а землю, что оказалось значимым, судя по последствиям. Разумеется, одним из аспектов научного метода является ограничение амбиций в отношении того, что может быть достигнуто: наука откусывает булочки понемногу, а не пытается слопать великие вопросы за один присест.

Ключом к пониманию чего бы то ни было является сочетание наблюдения, особенно количественной разновидности наблюдения, которую мы называем измерением, и систематического способа мышления, который мы называем логикой. Первыми из шагов, которые в конце концов привели нас к современному пониманию нашей арены действия, были измерения, проведенные вавилонянами и египтянами, и логика, развитая греками. Вавилоняне владели процедурой, но не имели доказательств: греки внесли доказательства. Вавилоняне, например, знали за тысячу лет до греков, что сумма квадратов сторон прямоугольного треугольника равна квадрату его гипотенузы, но оставили грекам, возможно, математическому коллективу некоего вида, известному нам под именем Пифагора, доказательство того, что эта связь верна для любого мыслимого прямоугольного треугольника. Процедура является основой знания и базой для приложений, но доказательства обостряют интуицию и ведут нас к более глубокому пониманию.

Я остановлюсь ненадолго на теореме Пифагора, поскольку в ней заключено несколько важных уроков. Разумеется, мы увидим, что некоторые черты нашего современного понимания пространства и времени были предвосхищены в трудах Пифагора (около 500 лет до н.э.), Эвклида (около 300 лет до н.э.) и Аполлония из Перга (около 200 лет до н.э.). Об этих персонажах мы не знаем практически ничего, и поскольку большинство анекдотов о них было записано спустя века после их смерти, мы не можем полагаться на эти рассказы. Однако уцелело многое из их необычайных мыслей, золотых сокровищ, содержащих доказательства и прозрения в свойства пустого пространства.


Мы начнем с байки и представим себе фантастический подход, который мог использовать древний завоеватель Месопотамии, Хаммурапи, когда он обследовал свои новые владения 3500 лет тому назад. Будем считать, что Хаммурапи жил в мире, полном неудобств, не последним из которых было соглашение, что расстояния с севера на юг измеряются в метрах, а расстояния с востока на запад измеряются в ярдах. Когда землемеры Хаммурапи обследовали его свежезавоеванные поля, они измеряли длины их сторон и, по таинственным причинам, связанным с налогообложением, длины их диагоналей, регистрируя последние либо в метрах, либо в ярдах, как им подскажет фантазия. Можно подозревать, что Хаммурапи нашел мало смысла в числах, которые собрали его землемеры. Например, одно поле, вытянутое с севера на юг, имело стороны 120 метров и 130 ярдов и диагональ 169 метров, в то время как другое, вытянутое с востока на запад, имело стороны 131 ярд и 119 метров с диагональю 185 ярдов. Хаммурапи был озадачен, поскольку оба поля выглядели одинаково.

Однажды ему в голову пришла мысль. Он решил отвергнуть древнее соглашение о единицах и приказал, чтобы с этого момента все расстояния регистрировались бы в метрах (м). После большой и усердной работы его землемеры представили ему новый список сторон и диагоналей. Внезапно он увидел, что их измерения стали теперь много более полезными. Стороны обоих полей, выглядевших одинаково, были 120 м и 119 м, а их диагонали были по 169 м. Сведя все эти измерения в один ряд путем использования одинаковых единиц, Хаммурапи отделил форму от ориентации: все объекты одинаковой формы имеют одинаковые размеры, независимо от их ориентации.

Хаммурапи пришлось продолжить приведение в порядок измерений в своем царстве и дальше. Не все поля в его царстве имели одинаковые размеры, и его землемеры представляли списки сторон и диагоналей, которые, даже выраженные в метрах, выглядели, на его взгляд, не намного отличающимися от случайных. Например, один богатый землевладелец имел поле со сторонами 960 м и 799 м и диагональю 1249 м, а другой, более бедный землевладелец имел поле со сторонами 60 м и 45 м и диагональю 75 м. И тогда наш фиктивный, но блистательный Хаммурапи внезапно вскрикнул (по-шумерски) эврика. Он увидел, что, если для каждого из его полей, безотносительно к размерам, он возведет в квадрат длины его сторон и сложит два квадрата вместе, то результат будет равен квадрату длины диагонали. То есть все измерения, собранные его землемерами, удовлетворяют формуле:

расстояние2 = сторона12 + сторона22,

где расстояние есть длина диагонали. Будучи экономным правителем, он мог теперь приказать своим землемерам экономить время и заработную плату и измерять только стороны полей, поскольку длину диагоналей он мог узнать сам. Конечно, он понимал, что, даже если они будут настаивать на использовании причудливых единиц этого царства, он все равно сможет узнавать длину диагонали, записав:

расстояние2 = (C × сторона1)2 + сторона22,

где C — множитель, необходимый, чтобы перевести ярды в метры, одна из глубоко чтимых фундаментальных констант этого царства.

Здесь мы можем отступить от нашей мифической версии Хаммурапи, с его формулой, его эффективностью и его налогами. Более важно, что вечная польза, для которой он предназначал эту формулу, заключается в том, что он идентифицировал выражение, некоторым образом передающее свойства пространства Месопотамии. Неизвестный индиец, написавший Сульвасутру (Правила веревок), расчеты для таинственных сакральных церемоний священнослужителей ведической эры (около 500 лет до н.э.), тоже знал эту формулу, поскольку брахманы нуждались в надежно спроектированном и построенном прямоугольном алтаре. Китайцы Чжан Цан и Цин Чоу-чан, составившие в период Хань (начавшийся в 200 г. до н.э.) сборник, содержавший математические сведения, тоже знали ее.

Как мы увидим, существование частной формулы для расстояния между двумя точками соответствует существованию геометрии, описанию пространства в терминах точек, линий, плоскостей и объемов, которые могут существовать в нем. Чтобы определить геометрию пространства, в котором мы обитаем, надо определить формулу. Определение геометрии пространства Месопотамии, данное Хаммурапи, потребовало двух шагов. Сначала мы должны определить единицы вдоль различных координатных осей; затем мы должны найти формулу, которая задает расстояние между двумя точками. Из того, что такая же величина C годится для Индии и Китая, следует, что пространство в Индии и Китае имеет ту же геометрию, что и пространство Месопотамии. Доказательство того, что формула Хаммурапи пригодна для любого поля всюду во Вселенной, а не только в Месопотамии, возможно, было сделано Пифагором и его школой, но надежные свидетельства того, что они сделали нечто большее, чем просто использовали ее, отсутствуют. Чтобы найти доказательство этой теоремы, мы должны обратиться к Началам Евклида, написанным примерно 2300 лет назад и с тех пор воспроизводимым, но причин полагать, что ее доказал сам Евклид, не существует.

Евклид обнаружил, что он может вывести характеристики пространства, включая дедуктивную формулу Хаммурапи, из пяти простых и кажущихся очевидными утверждений, из своих «аксиом». Это было поистине замечательным достижением. Если бы я писал эту книгу 2000 лет назад, я обязательно включил бы аксиомы Евклида в число великих идей науки, поскольку, если не считать одного маленького дефекта, они удовлетворяют критериям, предъявляемым великой идее: они просты, но содержат неограниченно богатые следствия. Дефект, конечно, заключается в том, что они неверны (в том смысле, что они неточно описывают пространство, в котором мы обитаем); но мы можем ненадолго пренебречь этим и воздать Евклиду почести, которые он заслужил.

Евклид сжал свое описание пространства в следующие пять замечаний:

1. Между любыми двумя точками можно провести прямую.

2. Прямая линия без ограничений может продолжаться в любом направлении.

3. Можно построить круг с любым центром и любого радиуса.

4. Все прямые углы равны друг другу.

5. Для любых данных прямой и точки, не лежащей на ней, можно провести через эту точку одну, и только одну прямую, параллельную данной.

(Я несколько упростил эти утверждения, но сохранил их суть.) Пятая аксиома известна как постулат о параллельных прямых. Он ответственен за большее количество бед, чем почти любое другое утверждение в математике, ибо он имеет более сложный вид по сравнению с другими, соблазнительно намекая, что его можно доказать с помощью четырех более простых аксиом. Целые жизни напрасно были растрачены на безуспешные попытки вывести эту аксиому из других. Теперь мы знаем, что она независима от других аксиом и что можно придумать абсолютно приемлемые геометрии, в которых постулат о параллельных прямых заменен другими, таким, например, как:


Питер Эткинз читать все книги автора по порядку

Питер Эткинз - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Десять великих идей науки. Как устроен наш мир. отзывы

Отзывы читателей о книге Десять великих идей науки. Как устроен наш мир., автор: Питер Эткинз. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.