Символ Кодон Мнемоническое обоснование
0 ....... 666 Число Зверя для Таинственного Нуля
S ....... 123 последовательность: 1, 2, З…
= ....... 111 зрительное сходство, в повернутом виде + ....... 112 1+1=2
* ....... 236 2*3=6
( ....... 362 кончается на 2
) ....... 323 кончается на 3 | эти
< ....... 212 кончается на 2 | три пары
> ....... 213 кончается на 3 | формируют
[ ....... 312 кончается на 2 | схему
] ....... 313 кончается на 3 /
а ....... 262 противоположно A (626)
' ....... 163 163-простое число
Λ ...... 161 «Λ»-«график» последовательности 1-6-1"
V ...... 616 «V»-«график» последовательности 6-1-6
э ...... 633 в некотором роде, из 6 следуют 3 и 3
~ ....... 223 2+2 не 3
E ....... 333 «E» выглядит как «3»
A ....... 626 противоположно «A»- также «график» 6-2-6
: ....... 636 две точки, две шестерки
пунк .... 611 особенное число (именно потому, что в нем нет ничего особенного)
Каждый символ ТТЧ соотнесен с трехзначным числом, составленным из цифр 1, 2, 3 и 6 таким образом, чтобы его было легче запомнить. Каждое такое трехзначное число я буду называть Геделев кодоном, или, для краткости, кодоном. Заметьте, что для b. с, d или е кодонов не дано, поскольку мы используем здесь строгую версию ТТЧ. Для этого есть причина, которую вы узнаете в главе XVI. Последняя строчка, «пунктуация», будет объяснена в главе XIV.
Теперь мы можем представить любую строчку или правило ТТЧ в новом наряде. Вот, например, Аксиома 1 в двух нотациях, новая над старой:
626, 262, 636, 223, 123, 262, 111, 666
. A a : ~ S a = 0
Обычная условность — использование пунктуации после каждых трех цифр — очень кстати совпала с нашими кодонами, облегчая их чтение.
Вот Правило Отделения в новой записи:
ПРАВИЛО: Если x и 212x633y213 являются теоремами, то у - также теорема.
Наконец, вот целая деривация, взятая из предыдущей главы; она дана в строгой версии ТТЧ и записана в новой нотации:
626,262,636,626.262,163,636,362,262,112,123,262,163,323,111,123,362,262,112,262,163,323 аксиома 3
. A a : A a ' : ( a + S a ' ) = S ( a + a ' )
626,262,163,636,362,123,666,112,123,262,163,323,111,123,362,123,666,112,262,163,323 спецификация
. A a ' : ( S 0 + S a ' ) = S ( S 0 + a ' )
362,123,666,112,123,666,323,111,123,362,123,666,112,666,323 спецификация
. ( S 0 + S 0 ) = S ( S 0 + 0 )
626,262,636,362,262,112,666,323.111.262 аксиома 2
. A а : ( а + 0 ) = а
362,123,666,112,666,323,111,123,666 спецификация
. ( S 0 + 0 ) = S 0
123,362,123,666.112,666,323,111,123,123,666 добавить «123»
. S ( S 0 + 0 ) = S S 0
362,123,666,112,123,666,323,111,123,123,666 транзитивность
. ( S 0 + S 0 ) = S S 0
Обратите внимание, что я изменил название правила «добавить S» на «добавить 123», поскольку данное правило узаконивает именно эту типографскую операцию.
Новая нотация кажется весьма странной. Вы теряете всякое ощущение значения; однако, если потренироваться, вы сможете читать строчки в этой нотации так же легко, как вы читали строчки ТТЧ. Вы сможете отличать правильно сформированные формулы от неправильных с первого взгляда. Естественно, поскольку это настолько наглядно, вы будете думать об этом, как о типографской операции — но в то же время выбор правильно сформированных формул в этой нотации эквивалентен выбору определенного класса чисел, у которых есть также арифметическое определение.
А как же насчет «арифметизации» всех правил вывода? Они все еще остаются типографскими. Но погодите минутку! Согласно Центральному Предложению, типографское правило — все равно, что арифметическое правило. Ввод и перестановка цифр в числах десятичной записи — это арифметическая операция, которая может быть осуществлена типографским путем. Подобно тому, как добавление «О» справа от числа эквивалентно умножению этого числа на 10, каждое правило представляет собой компактное описание длинного и сложного арифметического действия. Таким образом, нам не придется искать эквивалентных арифметических правил, поскольку все правила уже арифметические!
Числа ТТЧ: рекурсивно счетное множество чисел
С такой точки зрения, приведенная выше деривация теоремы «362,123,666,112,123,666,323,111,123,123,666» представляет собой последовательность весьма сложных теоретико-численных трансформаций, каждая из которых действует на одно или более данных чисел. Результатом этих трансформаций является, как и ранее, выводимое число, или, более точно, число ТТЧ. Некоторые арифметические правила берут старое число ТТЧ и увеличивают его определенным образом, чтобы получить новое число ТТЧ, некоторые уменьшают старое число ТТЧ; другие правила берут два числа ТТЧ, воздействуют на них определенным образом и комбинируют результаты, получая новое число ТТЧ — и так далее, и тому подобное. Вместо того, чтобы начинать с одного известного числа ТТЧ, мы начинаем с пяти — одно для каждой аксиомы (в строгой нотации). На самом деле, арифметизированная ТТЧ очень похожа на арифметизированную систему MIU — только в ней больше аксиом и правил, и запись точных арифметических эквивалентов была бы титаническим и совершенно «непросветляющим» трудом. Если вы внимательно следили за тем, как это было сделано для системы MIU, у вас должно быть сомнений в том, что здесь это делается совершенно аналогично.
Эта «гёделизация» ТТЧ порождает новый теоретико-числовой предикат:
а — число ТТЧ.
Например, мы знаем из предыдущей деривации, что 362,123,666,112,123,666,323,111,123,123,666 является числом ТТЧ, в то время как число 123,666,111,666 числом ТТЧ предположительно не является.
Оказывается, что этот новый теоретико-численный предикат можно выразить некоей строчкой ТТЧ с одной свободной переменной — скажем, а. Мы могли бы поставить тильду впереди, и эта строчка выражала бы дополняющее понятие:
а — не число ТТЧ.
Теперь давайте заменим все а в этой второй строчке на символ числа ТТЧ для 123,666,111,666 — символ, содержащий ровно 123,666,111,666 S и слишком длинный, чтобы его здесь записывать. У нас получится строчка ТТЧ, которая, подобно МУМОНу, может быть интерпретирована на двух уровнях. Во-первых, она будет означать
123,666,111,666 — не число ТТЧ.
Но, благодаря изоморфизму, связывающему числа, ТТЧ с теоремами ТТЧ, у этой строчки есть и второе значение:
S0=0 не теорема ТТЧ.
ТТЧ пытается проглотить саму себя
Это неожиданно двусмысленное толкование показывает, что ТТЧ содержит строчки, говорящие о других строчках ТТЧ. Иными словами, метаязык, на котором мы можем говорить о ТТЧ, берет начало, хотя бы частично, внутри самой ТТЧ. И это не случайность; дело в том, что архитектура любой формальной системы может быть отражена в Ч (теории чисел). Это такая же неизбежная черта ТТЧ, как колебания, вызываемые в патефоне, проигрываемой на нем пластинкой. Кажется, что колебания должны вызываться внешними причинами, — например, прыжками детей или ударами мяча; но побочный — и неизбежный — эффект произведения звуков заключается в том, что они заставляют колебаться сам механизм, их порождающий. Это не случайность, а закономерный и неизбежный побочный эффект. Он свойствен самой природе патефонов. И так же самой природе любой формализации теории чисел свойственно то, что ее метаязык содержится в ней самой.
Мы можем почтить это наблюдение, назвав его Центральной Догмой Математической Логики и изобразив его на двухступенчатой диаграмме.
ТТЧ ==> Ч ==> мета-ТТЧ
Иными словами, у строчки ТТЧ есть интерпретация в Ч, а у высказывания Ч может быть второе значение — оно может быть понято как высказывание о ТТЧ.
G: строчка, говорящая о себе самой на коде
Эти интересные факты — только половина истории. Другая половина — интенсификация автореференции. Мы сейчас находимся в положении Черепахи, когда она обнаружила, что можно создать пластинку, разбивающую проигрывающий ее патефон. Вопрос только в том, какую именно запись надо ставить на данный патефон. Выяснить это непросто.
Для этого нужно найти строчку ТТЧ — мы будем называть ее «G» — которая говорит о себе самой, в том смысле, что — одно из ее пассивных значений — это высказывание о G.