MyBooks.club
Все категории

Энрике Грасиан - Том 18. Открытие без границ. Бесконечность в математике

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Энрике Грасиан - Том 18. Открытие без границ. Бесконечность в математике. Жанр: Математика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Том 18. Открытие без границ. Бесконечность в математике
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
209
Читать онлайн
Энрике Грасиан - Том 18. Открытие без границ. Бесконечность в математике

Энрике Грасиан - Том 18. Открытие без границ. Бесконечность в математике краткое содержание

Энрике Грасиан - Том 18. Открытие без границ. Бесконечность в математике - описание и краткое содержание, автор Энрике Грасиан, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить! Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ. Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.

Том 18. Открытие без границ. Бесконечность в математике читать онлайн бесплатно

Том 18. Открытие без границ. Бесконечность в математике - читать книгу онлайн бесплатно, автор Энрике Грасиан

Британский математик Брук Тейлор (1685–1731) вычислил приближенное значение √2 при помощи последовательности сумм:


Члены этой последовательности постепенно сходятся к √2 поочередно слева и справа, что можно видеть в следующей таблице, где представлены значения первых девяти членов.



Таким образом, начав с 1 — оценки √2 слева и 1,5 — оценки справа, мы постепенно приближаемся к истинному значению этого числа. Речь идет о бесконечных последовательностях, которые постепенно приближаются к истинному значению √2, однако утверждать, что √2 — конкретное число, означает признать существование актуальной бесконечности.

Если кто-то, подобно древним грекам и многим другим математикам различных эпох, утверждает, что иррациональных чисел не существует, то можно быть уверенным, что он, пусть и неявно, отрицает существование актуальной бесконечности.


Квантовый скачок

Рассмотрим, как можно увязать между собой нечто бесконечно большое (бесконечное продолжение прямой) и бесконечно малое (деление на бесконечно много частей). Допустим, что даны две параллельные прямые и r'.



Обозначим на первой точку Р, которую будем использовать как начало отсчета. Теперь отметим на второй прямой точку Q, расположенную, например, на перпендикуляре, проведенном к r через точку Р. Угол между отрезком PQ и r' равен 90° (прямой угол). Переместим точку Q, которая находится на прямой r', вправо.

Заметим, что угол α изменился, и по мере того, как мы перемещаем точку все дальше вправо, он постепенно уменьшается. Очевидно, что чем дальше точка Q, тем меньше угол α. Бесконечное продолжение прямой, вызванное движением точки Q, неразрывно связано с непрерывным уменьшением угла до сколь угодно малых значений. Если говорить простым языком, можно сказать, что одно становится бесконечно большим, а другое одновременно — бесконечно малым. Здесь важно отметить следующее: точка Q смещается вправо по прямой r непрерывно, и угол уменьшается также непрерывно.

Рассмотрим ситуацию с иной точки зрения. Будем уменьшать угол и наблюдать за тем, как точка Q удаляется в бесконечность. Расстояние от точки Q до прямой r сохраняется и равно расстоянию между двумя параллельными прямыми. Ключевой вопрос звучит так: что произойдет, когда угол, образуемый отрезком PQ и прямой r, станет равен нулю? Ответ таков: точка Q станет бесконечно удаленной, причем не произвольной, а такой, в которой обе прямые сойдутся. Пока что все в порядке, но переход к бесконечности вновь оказался болезненным. Потенциальная бесконечность, которую мы себе представляли, стала актуальной бесконечностью, и мы получили удивительный результат: расстояние от точки Q до прямой r вдруг стало равным нулю.

Можно ли считать этот эксперимент исключительно мысленным? Мы никогда не увидим, как точка Q становится частью прямой r, и принимаем как данность, что после этого прыжка в бесконечность создается принципиально новая ситуация. Современная физика предлагает модель, в которой этот мысленный эксперимент совершенно реален. Когда Планк сформулировал основы квантовой механики, он предложил сценарий, весьма похожий на только что описанный. В модели атома, принятой в современной физике, электрон, который вращается по орбите с энергетическим уровнем r', может совершить квантовый скачок и перейти на иной энергетический уровень r. Более того, этот переход совершается не последовательно, а скачкообразно. Можно сказать, проведя параллель с нашим примером, что электрон непрерывно накапливает энергию аналогично тому, как непрерывно уменьшается величина угла α. В какой-то конкретный момент электрон (наша точка Q) переходит с одного энергетического уровня на другой. В этом смысле можно признать правоту Зенона, пусть это и приведет к противоречию. Не существует движения в том смысле, как мы его понимаем, которое перемещает электрон с одной орбиты на другую. Существуют два различных физических состояния, в которых потенциальная и актуальная бесконечность удивительным и загадочным образом сосуществуют в пространстве и времени.

Глава 3

Встречи на бесконечности

Первыми, кто «увидел» бесконечность в пространстве, были не философы и не геометры, а художники Возрождения. Свободные от строгих ограничений церкви, благодаря знакомству с математическими трудами древних греков они открыли новый путь в математике, где бесконечность перестала быть чем-то запретным, носящим на себе печать абсолютного зла.


Трехмерное изображение

Когда говорят о Возрождении, мы сразу представляем себе многочисленные произведения живописи, скульптуры, архитектуры, новые технологии, но практически ничего, что имело бы отношение к математике. Причина в том, что важнейшей задачей для представителей этого периода было восстановление уже известного. В Средневековье труды греков и арабов, в которых описывались фундаментальные основы алгебры и геометрии, были преданы забвению (или задвинуты на дальние полки библиотек немногочисленных монастырей). Однако именно в геометрии служители искусства эпохи Возрождения, особенно живописцы, добились выдающихся результатов. Важную роль сыграло геометрическое воплощение бесконечности.

Как правило, представители Возрождения владели различными знаниями, относившимися не только к искусству, но и к науке. Их работы часто оплачивали меценаты или короли, которые заказывали картины, скульптуры, музыкальные произведения, здания или сокровищницы для хранения королевских ценностей и даже подробные исследования, посвященные траектории снарядов.

Художники Возрождения унаследовали от прошлой эпохи живопись религиозного характера, в которой существовали жестко определенные правила относительно использования цветов и изображения фигур. Так, святые должны были изображаться на позолоченном фоне как символ того, что они находятся на небесах. Большинство цветов, равно как и расположение и размеры персонажей, имели особое значение, связанное с местом персонажей в иерархии. Однако наиболее важным было то, что все герои изображались в очевидно двумерном пространстве: они были плоскими, а стиль живописи напоминал древнеегипетский. Безусловно, это делалось умышленно и имело символическое значение: определенных святых нельзя было изображать реалистично, так как они противопоставлялись всему земному.

* * *

ДУХ ВОЗРОЖДЕНИЯ

Леонардо да Винчи (1452–1519), ярчайший пример гения эпохи Возрождения, в «Трактате о живописи» размышляет о понятии непрерывности в его философском смысле не только потому, что оно принадлежит исключительно к философии, но и потому, что используется во множестве других дисциплин: «Если ты скажешь, что немеханическими науками являются науки умозрительные, то я скажу, что живопись умозрительна и что как музыка и геометрия рассматривают пропорции непрерывных величин и как арифметика — прерывных, так и она в своей перспективе рассматривает все непрерывные количества и качества отношений теней и светов и расстояния».

* * *

Художники Возрождения не были связаны строгими церковными нормами, и первые попытки воспользоваться этой свободой происходили в сфере максимально достоверного изображения реальности. Иными словами, художники попытались создать объемное изображение. Для этого начали вырабатываться новые техники рисунка и живописи, позволявшие передать ощущение глубины с помощью света, тени и цвета. Тени, например, указывали на положение объектов, а цвета становились более тусклыми по мере удаления от переднего плана. Все эти приемы помогали передать ощущение глубины, но важнее всего было, что сам рисунок создавался в соответствии с четкими геометрическими правилами. Поэтому неудивительно, что именно в живописи математические открытия проявились особенно ярко.

В контексте этой книги важнее всего, что художники помещали бесконечность на плоскость картины, превратив в нечто актуальное то, что до этого в геометрии считалось лишь потенциальным. Напомним, что Аристотель считал прямую существующей лишь потенциально, но уже Евклид определял ее как отрезок, который можно продолжать бесконечно, и использовал это определение во всех построениях и доказательствах. Этой же формулировке следовали все геометры XVII столетия.


Энрике Грасиан читать все книги автора по порядку

Энрике Грасиан - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Том 18. Открытие без границ. Бесконечность в математике отзывы

Отзывы читателей о книге Том 18. Открытие без границ. Бесконечность в математике, автор: Энрике Грасиан. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.