MyBooks.club
Все категории

Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума. Жанр: Математика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
160
Читать онлайн
Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума

Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума краткое содержание

Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума - описание и краткое содержание, автор Микель Альберти, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.

Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума читать онлайн бесплатно

Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума - читать книгу онлайн бесплатно, автор Микель Альберти

Все мы рассматриваем новые идеи через призму своего культурного опыта, и чтобы усвоить что-то новое, требуется взглянуть на уже известное под другим углом. Обучаясь, человек может обнаружить, что его рассуждения и рассуждения, приводимые в учебнике, вступают в конфликт друг с другом. Так происходит при изучении степеней, показатели которых являются отрицательными числами, десятичными дробями или иррациональными числами — их сложно понять в рамках классического подхода, где рассматриваются, например, операции умножения или деления.

Возвести число в степень означает умножить его на само себя столько раз, сколько указывает показатель степени:

34 = 3·3·3·3

При перемножении степеней их показатели складываются, при делении — вычитаются:

23·25  = (2·2·2)·(2·2·2·2·2) = 28.


Однако если мы разделим друг на друга степени с одинаковым показателем, например, 23 на 23, то получим удивительный результат. С одной стороны, он будет равен 1, так как 8/8 = 1. Но в соответствии с правилом показатели степеней должны вычитаться:


Это означает, что приведенный выше результат возможен только в том случае, если 20 = 1. Но почему число, умноженное само на себя ноль раз, равно 1? И это не все. Если при делении степеней показатель в знаменателе больше, чем в числителе, то мы получим степень с отрицательным показателем:


Изначально возведение числа в степень означало умножение этого числа на само себя несколько раз. Затем в математике появились операции и выражения, противоречащие этой точке зрения. Возвести число в отрицательную степень означает разделить единицу на число, умноженное само на себя столько раз, сколько указывает показатель степени. Логично ли это? Имеет ли это смысл? Да, это логично, но смысл этой операции нужно изменить. Нужно изменить понятие показателя степени как числа, означающего число сомножителей в произведении. Кроме того, степень с отрицательным показателем — то же самое, что степень с положительным показателем в знаменателе дроби. Таким образом:


Подобным же образом описываются степени с дробными показателями. Если квадратный корень числа возвести в квадрат, то результатом будет исходное число:

(√a)2 = a

Какой показатель степени будет соответствовать квадратному корню из а?


Почему бы теперь нам не определить смысл следующих выражений:

2π, 2√2

Их смысл определяется тем, что всякое иррациональное число (то есть число, которое нельзя представить в виде частного двух целых) является пределом последовательности рациональных чисел, как, например, квадратный корень из 2 и число π:

1; 1,4; 1,41; 1,411; 1,4142; 1,41421, … √2

3; 3,1; 3,14; 3,141; 3,1415; 3,14159, … π.

Так как мы знаем, что означает возведение числа в рациональную степень, мы можем определить степень с иррациональным показателем:

2√2 = предел {21; 21,4; 21,41; 21,414; 2,14142; …}.

Обратите внимание, насколько далеко мы отошли от исходного определения степени! Перед нами — удивительные результаты математического творчества: на основе элементарных операций мы создали новые операции и наделили их значением. Их смысл противоречит нашим прошлым знаниям, однако подчиняется логике, и эти новые операции образуют часть согласованной системы. Изначально показатель степени мог быть только натуральным числом. Однако теперь степень с натуральным показателем рассматривается всего лишь как частный случай более широкого понятия: показатель степени может быть отрицательным, дробным и даже иррациональным.

Чтобы принять результат творчества, необходимо сменить угол зрения. Теперь уже не следует рассматривать степень как умножение числа само на себя столько раз, сколько указывает показатель степени, так как нет никакого смысла умножать число само на себя —0,12 раза или 71 раз. Исходная точка зрения послужила своеобразным трамплином к новому, более широкому и общему понятию, частным случаем которого она является. Творчество изменило нас.


От площади прямоугольника к площади произвольной фигуры

Отрезок и треугольник — две базовые фигуры математики и всего человеческого знания в целом. Отрезок имеет единственную характеристику — длину. По сути, так как не существует никакого осязаемого объекта, который представлял бы собой отрезок, можно сказать, что отрезок «состоит» из длины. А вот треугольник, кроме длины (периметра), имеет еще и площадь — меру пространства, ограниченную тремя его сторонами.

Вычисление площадей с древнейших времен было одной из важных задач. В наиболее популярной легенде о происхождении математики говорится, что она зародилась в долине Нила, и причиной ее возникновения стала необходимость измерять площадь земли, затапливаемой во время разливов реки.

Для данного прямоугольника со сторонами а и b площадь S поверхности, ограниченной его сторонами, определяется как произведение его длины на ширину: S = а·Ь. Так как всякий треугольник является половиной некоторого прямоугольника, его площадь равна половине площади этого прямоугольника. Как можно видеть на следующем рисунке, площадь треугольника АВС равна половине площади прямоугольника APQC, основанием которого является сторона АС треугольника, а ширина равна высоте A, опущенной на основание АС:



Следовательно, площадь треугольника равна половине произведения его основания на высоту:

S = (1/2)·A·C·h

Любую плоскую фигуру можно разбить на несколько треугольников. Вычисление площади фигуры равносильно вычислению суммы площадей составляющих ее треугольников. Но как быть в случае, если фигура ограничена не прямолинейными, а криволинейными отрезками?

Простейшей криволинейной фигурой является круг. Задача о вычислении площади круга очень древняя, а задача о построении квадрата, площадь которого равна площади данного круга, с помощью циркуля и линейки — одна из трех классических задач геометрии.

Каково соотношение между площадью круга и площадью квадрата? В первом приближении площадь круга радиуса r можно оценить площадями вписанного и описанного квадрата:



Площадь круга Sс заключена между площадью квадрата с диагональю 2r и площадью квадрата со стороной 2r. Среднее значение этих двух площадей и будет первым приближенным значением площади круга S:


Сегодня нам известно, что этот результат не соответствует действительности, так как площадь круга равняется не 3r2, а πr2. Тем не менее в Древнем Египте соотношение между длиной окружности и ее диаметром принималось равным 3, хотя нетрудно видеть, что если окружность радиуса r совершит полный поворот, пройденная ею длина будет больше, чем ее утроенный диаметр. Однако сейчас нас интересует не поиск точного значения π, а переход от площади прямоугольника или треугольника к площади круга.

Можно построить вписанный и описанный равносторонний треугольник для данного круга, однако в этом случае задача только усложнится, а полученный результат будет не точнее предыдущего. Продолжив аналогичные рассуждения, придем к выводу, что если мы построим для данного круга вписанные и описанные многоугольники с большим числом сторон, то сможем вычислить его площадь с большей точностью. Результат будет тем точнее, чем больше сторон будет у этих многоугольников.

В пределе (если такая ситуация вообще возможна) мы получим два многоугольника с бесконечным числом сторон, площади которых будут равны площади круга.

Следовательно, достаточно рассматривать либо вписанные, либо описанные многоугольники, так как в пределе они совпадут.

Именно так рассуждал Архимед. Вместо того чтобы рассмотреть многоугольник с п сторонами, он начал с правильного шестиугольника и последовательно удваивал число его сторон. Он дошел до многоугольника с 96 сторонами и вычислил приближенное значение числа π и площади круга с очень хорошей точностью:


Но заслуга Архимеда состоит не в том, что он провел такие трудоемкие расчеты. Во-первых, он показал, что большую часть вычислений можно опустить, если на данном этапе известны периметры и площади вписанного и описанного многоугольника — периметры и площади соответствующих многоугольников на следующем этапе можно вычислить как среднее гармоническое и среднее геометрическое.


Микель Альберти читать все книги автора по порядку

Микель Альберти - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума отзывы

Отзывы читателей о книге Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума, автор: Микель Альберти. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.