MyBooks.club
Все категории

Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы. Жанр: Математика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Сборник задач по математике с решениями для поступающих в вузы
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
191
Читать онлайн
Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы

Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы краткое содержание

Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы - описание и краткое содержание, автор Альберт Рывкин, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.

Сборник задач по математике с решениями для поступающих в вузы читать онлайн бесплатно

Сборник задач по математике с решениями для поступающих в вузы - читать книгу онлайн бесплатно, автор Альберт Рывкин

Если sin x − cos x = 0, то tg x = 1, откуда x = π/4 + kπ.

Остается решить уравнение

sin x + sin x cos x + cos x = 0.

Мы знаем, что (sin x + cos x)² = 1 + 2 sin x cos x. Отсюда

Сделав такую замену в оставшемся уравнении, получим квадратное уравнение относительно y = sin x + cos x

y² + 2y − 1 = 0.

Корни этого уравнения

y1,2 = −1 ± √2.

Записав sin x + cos x в виде √2 cos (x − π/4), мы убедимся, что корень y1 = −1 − √2 является посторонним. Остается

cos (x − π/4) = 1 − 1/√2,

откуда

x = 2kπ ± arccos (1 − 1/√2) + π/4.

Ответ. 2kπ; π/4 + kπ; 2kπ ± arccos (1 − 1/√2) + π/4.

13.4. Данное уравнение эквивалентно системе

Преобразуя левую и правую части уравнения в сумму тригонометрических функций, мы получим уравнение

cos 9x = 0, откуда x = π/18(2n + 1).

Из найденных значений x нужно выбрать те, при которых

cos 2x cos 7x ≠ 0, т. е. cos 5x + cos 9x ≠ 0.

Так как речь идет о значениях неизвестного, при которых cos 9 x = 0, то остается потребовать, чтобы cos 5x ≠ 0, т. е. 5 · π/18(2n + 1) ≠ π/2(2k + 1), откуда 5(2n + 1)/9 ≠ 2k + 1. Число 5(2n + 1)/9  не может быть четным, так как в его числителе лишь нечетные множители.

Оно будет целым, когда = 2n + 1/9 = 2n + 1, т. е. при n = 9m + 4.

Следовательно, корнями уравнения являются числа x = π/18(2n + 1) при n ≠ 9m + 4.

Ответ. π/18(2m ± 1); π/18(18m ± 3); π/18(18m ± 5); π/18(18m ± 7).

13.5. Если запишем данное уравнение в виде

то получим равносильное уравнение. Однако дальнейшие преобразования заставляют нас ввести ограничения:

Далее

Когда tg x ≠ 0, то и sin x ≠ 0. Это означает, что первое уравнение можно переписать в виде 1/cos x = 2, откуда cos x = ½, что обеспечивает выполнение всех ограничений.

Ответ. 2nπ ± π/3.

13.6. Прибавив к обеим частям уравнения tg 3x, получим

3(tg 3x − tg 2x) = tg 3x (1 + tg² 2x),

или

Последнее уравнение эквивалентно системе

Решим первое уравнение. Для этого представим произведение sin x cos 2x в виде разности синусов. После приведения подобных членов получим

sin 3x = 3 sin x.

Воспользовавшись формулой синуса тройного угла, придем к уравнению

sin x (3 − 4 sin² x) = 3 sin x, или sin³ x = 0,

откуда x = πk.

Легко проверить, что при x = πk ни cos 2x, ни cos 3x в нуль не обращаются.

Ответ. πk.

13.7. Преобразуем уравнение следующим образом:

(sin x + cos x)(1 − sin xcos x) + 1/√2 sin 2xsin (x + π/4) = sin (π/2 − x) + sin 3x.

Так как sin x + cos x = √2 sin (π/4 + x), то придем к уравнению

sin (π/4 + x) = √2 sin (π/4 + x ) cos (π/4 − 2x).

Если sin (π/4 + x) = 0, то x1 = π/4(4n − 1). Остается

√2 cos (π/4 − 2x) = 1,

откуда

x2 = nπ, x3 = π/4(4n + 1).

Серии чисел x1, = π/4(4n − 1) и x3 = π/4(4n + 1) можно объединить: x1 = π/4(2n + 1).

Ответ. π/4(2n + 1); nπ.

13.8. Перепишем уравнение следующим образом:

4(tg 4x − tg 3x) = tg 2x (1 + tg 3x tg 4x).

Приведем выражения в скобках к виду, удобному для логарифмирования:

Уравнение равносильно системе

Так как cos x = 0 не удовлетворяет уравнению, то его можно переписать так:

4 tg x = tg 2x, или 2 tg x = tg x/1 − tg² x.

Мы воспользовались неабсолютным тождеством, которое исключает из области определения те значения x, при которых tg x не существует. Однако tg x входил в предыдущее уравнение, а потому существует, и потеря корней произойти не может. Из последнего уравнения, если tg x = 0, получаем x = nπ.

Если tg x ≠ 0, то 2 − 2 tg² x = 1, tg x = ±1/√2. Так как cos 3x и cos 4x не обращаются при этом в нуль, то можно написать ответ.

Ответ. nπ; nπ ± arctg 1/√2.

13.9. Уравнение можно переписать так:

Поскольку 0 < x < 2π, то 0 < x/2 < π и sin x/2 > 0. Однако cos x/2 в этом интервале меняет знак, и нам придется разбить интервал на два: 0 < x ≤ π и π < x < 2π.

Если 0 < x ≤ π, получим уравнение

√2/2 sin x/2 + √2/2 cos x/2 = sin 2x,

y которого может появиться лишь один посторонний корень при cos x = 0. Перепишем последнее уравнение так:

sin (x/2 + π/4) = sin 2x,

и найдем его корни из интервала 0 < x ≤ π: x1 = π/6, x2 = 3π/10. Если π < x < 2π, придем к уравнению

√2/2 sin x/2 − √2/2 cos x/2 = sin 2x   или   sin (x/2 − π/4) = sin 2x,

которое даст нам еще два корня: x3 = 7π/6, x4 = 13/10 π. Очевидно, что для полученных углов cos x ≠ 0.

Ответ. π/6; 3π/10; 7π/6; 13π/10.

13.10. Перенеся sin α в левую часть, запишем уравнение в виде

2 sin x/2 cos x − 2α/2 = 2 sin x/2 cos x/2,

или

sin x/2 (cos x − 2α/2 − cos x/2) = 0.

Если sin x/2 = 0, то x = 2nπ при любом α. Если cos x − 2α/2 = cos x/2, то либо x − 2α/2 + x/2 = 2nπ, откуда x = 2nπ + α, либо x − 2α/2 − x/2 = 2nπ, откуда α = 2nπ.

Ответ. При любом α: 2nπ, 2nπ + α; при α = 2nπ: x − любое.

13.11. Уравнение равносильно совокупности двух уравнений

cos 2x = sin² xa, cos 2x = a − sin² x.

Понизим степень в правой части каждого уравнения и найдем

cos 2x = 1 − 2a/3, cos 2x = 2a − 1.

Первое уравнение имеет решение, если

−1 ≤ 1 − 2a/3 ≤ 1, т. е. −1 ≤ a ≤ 2.

Второе уравнение имеет решение, если −1 ≤ 2a − 1 ≤ 1, т. е. 0 ≤ a ≤ 1. Данное в условии уравнение при −1 ≤ a ≤ 2 имеет решения

x = πn ± ½ arccos 1 − 2a/3,

а при 0 ≤ a ≤ 1 решения

x = πn ± ½ arccos (1 − 2a).

Так как

0 ≤ ½ arccos 1 − 2a/3 ≤ π/4 и 0 ≤ ½ arccos (1 − 2a) ≤ π/2,

то легко найти решения нашего уравнения, которые попадут в интервал 0 ≤ x ≤ 2π.

Ответ. ½ arccos 1 − 2a/3; π ± ½ arccos 1 − 2a/3; 2π − ½ arccos 1 − 2a/3 (существуют при −1 ≤ a ≤ 2);


Альберт Рывкин читать все книги автора по порядку

Альберт Рывкин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Сборник задач по математике с решениями для поступающих в вузы отзывы

Отзывы читателей о книге Сборник задач по математике с решениями для поступающих в вузы, автор: Альберт Рывкин. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.