MyBooks.club
Все категории

Александр Коган - Основы физиологии высшей нервной деятельности

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Александр Коган - Основы физиологии высшей нервной деятельности. Жанр: Медицина издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Основы физиологии высшей нервной деятельности
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
14 февраль 2019
Количество просмотров:
349
Читать онлайн
Александр Коган - Основы физиологии высшей нервной деятельности

Александр Коган - Основы физиологии высшей нервной деятельности краткое содержание

Александр Коган - Основы физиологии высшей нервной деятельности - описание и краткое содержание, автор Александр Коган, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Учебник состоит из двух частей: общей физиологии высшей нервной деятельности, где изложены общие свойства условных рефлексов и нервных процессов, лежащих в их основе, и частной физиологии высшей нервной деятельности, где рассмотрены особенности условно-рефлекторного поведения основных классов животных, а также высшая нервная деятельность человека. 2-е издание (1-е — 1959 г.) значительно обновлено; особое внимание обращено на возможности использования высшей нервной деятельности для решения практических задач.Максимальная ширина картинки в этой fb2-книге — 600 пикселей, но большинство картинок имеют размер не более 460 пикселей.

Основы физиологии высшей нервной деятельности читать онлайн бесплатно

Основы физиологии высшей нервной деятельности - читать книгу онлайн бесплатно, автор Александр Коган

Таблица 7. Положительная индукция из очага дифференцировочного торможения в кожном анализаторе (по Д.С. Фурсикову, 1922)



Однако мозг часто дифференцирует раздражители, связанные с одним и тем же пунктом анализатора, но отличающиеся друг от друга по силе или характеру воздействия. Будет ли в таких случаях проявляться положительная индукция? Ответ на этот вопрос дает следующий опыт. У собаки был выработан условный пищевой рефлекс на сильный свет, от него отдифференцировали слабый свет. Затем сильный свет был испробован сразу после слабого. И здесь условный слюнной рефлекс, вызванный сразу после дифференцировочного, увеличился почти на 50 %. Следовательно, в данном случае положительная индукция произошла из очага торможения в том же пункте анализатора.

Таким образом, положительная индукция может проявляться в различных анализаторах и при разных отношениях тормозного очага и положительно индуцируемого рефлекса.

Отрицательная индукция из очага возбуждения в очаг торможения. Явления отрицательной индукции можно продемонстрировать в следующем опыте. У собаки образован условный пищевой рефлекс на метроном 120 ударов/мин. К этому положительному раздражителю выработана дифференцировка метронома 60 ударов/мин. Как известно, дифференцировку очень легко разрушить, если начать сопровождать дифференцировочный раздражитель подкреплением. И действительно, после того как несколько раз метроном 60 ударов/мин применили с подкармливанием, он сам начал вызывать слюноотделение. Это простой и безотказный способ уничтожения тормозного очага.

Однако при помощи некоторых средств можно задержать разрушение дифференцировки, т.е. продлить существование очагов условного торможения. В частности, таким средством оказалось применение положительных сигналов, т.е. создание очагов условного возбуждения. Это видно из следующих опытов.

Например, собаку подкармливают после каждого применения метронома с частотой 60 ударов/мин до тех пор, пока у нее не начнет сильно выделяться слюна (разрушение дифференцировки). Тогда применяют с подкреплением один раз метроном с частотой 120 ударов/мин. В результате используемый вслед за ним метроном <...часть числа не видна…>0 ударов/мин, который только что вызывал слюноотделение, сразу теряет свое действие. Дифференцировка при этом восстанавливается, что связано с возникновением рядом очага возбуждения. Этот очаг отрицательно индуцировал, т.е. затормозил клетки пункта метронома с частотой 60 ударов/мин, и индукционное торможение усилило остатки дифференцировочного.

Таким образом, положительный сигнал благодаря отрицательной индукции укрепляет свое дифференцирование от близких отрицательных сигналов.

Мозаика возбуждения и торможения в высших отделах нервной системы. Взаимодействие иррадиирующих и индуцированных нервных процессов создает необычно сложное и меняющееся от момента к моменту их уравновешивание и территориальное разграничение. В результате возбуждение и торможение образуют дробный рисунок подвижной мозаики, непрерывно меняющей свои очертания.

В свое время И.П. Павлов говорил о том, какую замечательную картину вспыхивающих и затухающих, непрерывно перемежающихся мерцаний мы увидели бы на поверхности мозга, если бы его возбужденные пункты светились.

Эта мысль Павлова получила осуществление при изучении движения нервных процессов по коре больших полушарий с помощью методики электроэнцефалоскопии (М.Н. Ливанов, В.М. Ананьев, 1960). Электроэнцефалоскоп позволяет наблюдать мозаику электрической активности коры мозга при одновременном отведении из <…часть числа не видна…>00 ее пунктов и воспроизводит на экране телевизионной трубки непрерывно возникающие и меняющиеся подвижные картины, которые фиксируются киносъемкой (рис. 37). Такой «телевизор» мозга значительно расширяет возможности объективного изучения пространственной динамики активности коры при условно-рефлекторной деятельности.



Рис. 37. Перераспределение очагов активности в коре мозга кролика при выработке условного двигательного рефлекса на зрительное раздражение (по М.Н. Ливанову):

кадры киносъемки из опыта с сочетаниями вспышек света и изоритмических электрокожных раздражений лапы, яркость каждой точки на экране топоскопа отражает величину электрической активности этого пункта в данный момент (обратить внимание на постепенную концентрацию активности в районе двигательного и зрительного анализаторов)

Глава 6

СОН И СНОВИДЕНИЯ

Сон — своеобразное состояние организма, когда он замирает в неподвижности. Все животные и человек чередуют бодрствование со сном. Примерно треть своей жизни человек проводит во сне. Суточный ритм смены сна и бодрствования подчинил себе основные функции организма и его изменения связаны с трудной перестройкой их периодичности. Состояния, подобные сну, имеющие приспособительное значение, наблюдаются в жизни животных и могут быть вызваны при особых условиях и у человека, хотя они имеют иную природу.

Эволюция сна животных

Периодическая смена деятельности и покоя наблюдается у всех живых существ. Однако под сном принято понимать совершенно определенное явление. Сон как специфическое состояние нервных механизмов характеризуется типичной электрической активностью структур мозга, неподвижностью и угнетением тонической иннервации мускулатуры, торможением дыхания, сердечной деятельности и ряда вегетативных функций. В наиболее четком виде все эти характеристики сна проявляются лишь у высших животных и человека. Очень трудно их оценить в поведении низших животных, особенно беспозвоночных, у которых само понятие сна приобретает иной смысл.

Сон рыб. Сон рыб зависит от их экологии. Так, ночные хищники спят большую часть дня и охотятся ночью, однако сон их своеобразен. Например, карликовый сомик и ночью, временами впадая в «сонное» состояние, остается неподвижным, сердечные сокращения замедляются, но тонус мускулатуры — напряженный. Это состояние обозначили как «ночной покой» в отличие от «дневного покоя». Однако по показателям частоты сердечных сокращений дневной покой этого ночного хищника оказался более глубоким, чем ночной (соответственно 26 и 36 сокращений сердца/мин при 48 сокращениях при бодрствовании). Дыхание также становилось гораздо реже при дневном покое (15 вдохов/мин), чем при ночном покое (34 вдохов/мин), при гораздо более частом дыхании в состоянии бодрствования (68 вдохов/мин). Учет сравнительной длительности бодрствования и покоя карликового сомика при круглосуточной естественной освещенности показал сходные результаты (рис. 38), что свидетельствует о наличии у него внутреннего ритма смены бодрствования и покоя.



Рис. 38. Средняя длительность бодрствования (1), дневного покоя (2) и ночного покоя (3) в разное время суток у карликового сомика при непрерывном свете (А) и естественной освещенности (Б) (по И.Г. Кармановой)



Другой характер суточной периодики поведения наблюдали у рыб, питающихся в дневное время. Например, у кефали урежение сердечных сокращений во время ночного покоя более выражено, чем во время дневного. Однако смена покоя и бодрствования не сопровождается у рыб характерными изменениями электрической активности мозга, которые проявляются у птиц и млекопитающих и свидетельствуют о развитии в высших отделах нервной системы определенных стадий процессов сонного торможения. Поэтому такие состояния покоя у низших позвоночных предшествующие в эволюции сну высших животных, получили название первичного сна.

Сон амфибий. У амфибий суточное распределение бодрствования и покоя нерегулярно и имеет резко выраженные экологические различия. Так, у травяной лягушки, ведущей ночной образ жизни, днем преобладает состояние покоя с урежением сердечных сокращений. У озерной лягушки, подстерегающей добычу 80–90 % времени суток занимает состояние неподвижности, которое внешне является покоем, но без потери мышечного тонуса и урежения сердечных сокращений, чем отличается от истинного сноподобного покоя. Вместе с тем у амфибий можно наблюдать периоды более глубокого торможения, которые сменяются фазическими движениями, сопровождающимися быстрыми колебаниями электрических потенциалов в крыше среднего и отделах переднего мозга.

Сон рептилий. У рептилий суточная периодичность смены бодрствования и покоя становится более четкой. Например, болотная черепаха днем бодрствует или находится в состоянии дневного покоя (рис. 39). Однако дневной покой черепахи выражается лишь в неподвижности при открытых глазах, сохранении мышечного тонуса и способности к ориентировочным реакциям. Зато ночной покой характеризуется углублением состояния общего торможения, расслаблением мускулатуры при закрытых глазах. При этом в структурах головного мозга появляются медленные колебания потенциалов в диапазоне 3–7 Гц, сходные с «сонными потенциалами» высших животных.


Александр Коган читать все книги автора по порядку

Александр Коган - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Основы физиологии высшей нервной деятельности отзывы

Отзывы читателей о книге Основы физиологии высшей нервной деятельности, автор: Александр Коган. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.