На Х-хромосоме локализован ген фермента глюкозо-6-фосфат-дегидрогеназы. Мутация этого гена проявляется различными формами гемолитической анемии. Клиническая картина этих заболеваний включает многочисленные симптомы.
Редкие Х-сцепленные заболевания передаются по доминантному типу (например, определенные формы рахита).
Некоторые заболевания человека демонстрируют наследование, ограниченное полом. Такое заболевание как подагра связано с нарушением обмена мочевой кислоты и определяется аутосомно-доминантным типом наследования. Пенетрантность мутантного гена у мужчин составляет 80 %, у женщин – 12 %.
Митохондриальные генные болезни. Нуклеотидная последовательность митохондриального генома человека была определена в 1981 г. (Anderson S. [et al.], 1981). В этом геноме 37 генов: 13 генов кодируют белки, 22 гена – т-РНК, 2 гена – р-РНК митохондрий.
Клинически мутации мт-ДНК наиболее остро сказываются на энергозависимых тканях. Поскольку нервная и мышечная ткань отличаются наиболее высоким уровнем потребления АТФ, митохондриальные мутации часто проявляются в форме различных нейропатий и миопатий. Некоторые заболевания приводят к тяжелой патологии (синдром Пирсона, нейропатия Лебера, melas-синдром и др.), сопровождающимися энцефалопатией, слепотой, умственной отсталостью, ранней смертностью. Передача этих заболеваний происходит исключительно по материнской линии, поскольку только яйцеклетки передают в зиготу свои митохондрии. Возможно, одной из причин старения организма является накопление мутаций мт-ДНК в соматических клетках, ведущее к прогрессирующему разбалансированию реакций окислительного фосфорилирования.
10.5. Болезни с наследственной предрасположенностью
Болезни с наследственной предрасположенностью проявляются в результате совместного действия генетических факторов и факторов среды. Необходимо подчеркнуть, что граница этой группы с ранее рассмотренными «генетическими» болезнями, с одной стороны, и «ненаследственными» заболеваниями – с другой, весьма условна. Практически все болезни человека, в том числе инфекционные, имеют генетическую составляющую, а наследственные заболевания в той или иной мере зависят от внешней среды, часто определяющей их экспрессивность.
Болезни с наследственной предрасположенностью (мультифакториальные) характеризуются широким клиническим полиморфизмом, обусловленным различным соотношением генетических и средовых факторов в их патогенезе. Обычно они имеют полигенную природу, хотя роль разных генов в проявлении заболевания различна. Гены, полиморфизм которых обнаруживает связь с определенными заболеваниями, называются «генами предрасположенности». Таким образом, мультифакториальные заболевания являются следствием суммарного действия нескольких генов, фенотипический эффект которых обусловлен взаимодействием с факторами внешней среды. К этой группе принадлежит большинство психопатологий.
Сложный характер таких болезней затрудняет изучение их молекулярных механизмов. Относительную роль генотипа в патогенезе мультифакториальных заболеваний позволяет установить расчет коэффициента наследственности Хольцингера (Н). Если Н = 0,5, то это показывает, что роль генотипа и среды в этиологии заболевания примерно одинакова.
Диагностика мультифакториальных заболеваний осложняется возможным наличием генокопий (сходных фенотипов, возникающих при экспрессии разных генов) и фенокопий (модификаций, сходных по своему проявлению с определенными мутациями).
Как примеры рассмотрим заболевания человека, связанные с психической сферой.
Болезнь Альцгеймера – прогрессирующее ухудшение интеллектуальных способностей в старческом возрасте. Является основной причиной старческого слабоумия. Множество форм этой болезни обусловлено ее полигенным характером. Гены, обусловливающие ее развитие, локализованы на хромосомах 1, 14, 21. Локализованный на хромосоме 19 ген Аро-Е (с множеством аллелей), возможно, играет роль гена-модификатора. Дискордантность по этой болезни у монозиготных близнецов около 50 %, что указывает на равный вклад генотипа и среды в процесс патогенеза.
Особый интерес представляет исследование такого загадочного заболевания, как шизофрения. Ее симптомы многообразны и плохо систематизируются. Среди этого многообразия можно выделить галлюцинации, бредовые идеи, странное поведение. Весьма сложно разобраться в этиологии шизофрении. С одной стороны, высокий коэффициент наследуемости, показатели конкордантности у монозиготных близнецов, корреляция заболеваний приемных детей и их биологических матерей демонстрируют ведущую роль генотипа. В молекулярно-генетических исследованиях получены данные о связи шизофрении с определенными локусами хромосом 5, 6 и 8. Еще более убедительные данные получены о предрасположенности к шизофрении в случае делеции участка хромосомы 22.
Однако генетика шизофрении ставит много загадок. Обращает на себя внимание стабильный показатель частоты заболевания в разных культурах (около 1 %). Этот показатель не изменяют как репрессивные, так и стимулирующие (например, имбридинг) факторы. Эволюционная психология и социобиология объясняют «сохранность» генов шизофрении в процессе эволюции человека притягательностью нетипичного поведения в периоды социальных катаклизмов. Однако это объяснение выглядит несколько натянутым.
При анализе факторов внешней среды, способствовавших проявлению шизофрении, смущает их обилие. Сюда относятся самые разнообразные вирусные, бактериальные, грибковые, паразитарные болезни, пренатальные факторы, отношения с родителями, социальные взаимодействия. Многочисленные исследования пока не раскрыли загадку шизофрении. Возможно, под этим названием скрывается группа заболеваний со схожим патогенезом.
Процесс образования и формирования злокачественных опухолей – канцерогенез – представляет собой область наиболее интенсивных исследований биологии клетки и медицины. Это область огромной теоретической и практической значимости.
К злокачественной (или неопластической) трансформации клетки – малигнизации, могут привести совершенно разные факторы: химические, физические, биологические. Однако, несмотря на различия, все канцерогенные факторы (или канцерогены) определенным образом воздействуют на генетическую систему клетки. Поэтому необходимо подчеркнуть, что канцерогенез имеет генетическую природу.
Какие свойства приобретает нормальная клетка в процессе малигнизации?
1. Определяющее свойство опухолевых клеток – бесконтрольное автономное деление. Деление таких клеток не подвержено регуляции по принципу обратной связи, характерной для нормальной клетки.
2. Опухолевые клетки способны прорастать в другие ткани, стимулируя рост капилляров, обеспечивающих их пролиферацию, – метастазировать. Это является основным отличием злокачественной опухоли от доброкачественной.
3. Опухолевым клеткам требуется значительно меньше ростовых факторов, чем нормальным. Возможно, они способны сами вырабатывать факторы роста путем включения клеточной аутокринной системы.
4. Опухолевые клетки способны делиться неограниченно долго, в отличие от нормальных клеток, запрограммированных на гибель после определенного числа делений.
Опухолевые клетки имеют ряд других цитоморфологических и цитофизиологических особенностей. Таким образом, малигнизированные клетки выходят из-под контроля многих регуляторных систем организма.
В изучении процесса канцерогенеза фундаментальные данные были получены при исследованиях онкогенных (вызывающих опухоли) вирусов. Онкогенные вирусы были обнаружены среди 4 групп вирусов. Это паповавирусы, аденовирусы, герпесвирусы (ДНК-содержащие) и ретровирусы (РНК-содержащие). Все онкогенные вирусы встраивают свой генетический материал в хромосомную ДНК, становясь частью генома клетки. Ретровирусы создают ДНК-копии в ходе обратной транскрипции.
Принципиальное значение имело открытие у таких вирусов особых генов – онкогенов, ответственных за малигнизацию. Онкогены ДНК-содержащих вирусов обычно входят в группу «перекрывающихся генов», что осложняет их изучение. Значительно лучше изучены онкогены ретровирусов.
В геноме нормальных клеток многих организмов, включая человека, обнаружены последовательности, гомологичные онкогенам ретровирусов, – протоонкогены. Предполагается, что вирусные онкогены возникли в процессе эволюции (1–2 млрд лет назад) путем «захвата» вирусами клеточных протоонкогенов. Протоонкогены весьма сходны у самых разных организмов, даже далеких в филогенетическом отношении. Столь высокая консервативность этих генов должна указывать на их важную функцию.