MyBooks.club
Все категории

Сергей Бабичев - Медицинская микробиология, иммунология и вирусология

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Сергей Бабичев - Медицинская микробиология, иммунология и вирусология. Жанр: Медицина издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Медицинская микробиология, иммунология и вирусология
Издательство:
-
ISBN:
-
Год:
неизвестен
Дата добавления:
14 февраль 2019
Количество просмотров:
264
Читать онлайн
Сергей Бабичев - Медицинская микробиология, иммунология и вирусология

Сергей Бабичев - Медицинская микробиология, иммунология и вирусология краткое содержание

Сергей Бабичев - Медицинская микробиология, иммунология и вирусология - описание и краткое содержание, автор Сергей Бабичев, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Учебник состоит из семи частей. Часть первая – «Общая микробиология» – содержит сведения о морфологии и физиологии бактерий. Часть вторая посвящена генетике бактерий. В части третьей – «Микрофлора биосферы» – рассматривается микрофлора окружающей среды, ее роль в круговороте веществ в природе, а также микрофлора человека и ее значение. Часть четвертая – «Учение об инфекции» – посвящена патогенным свойствам микроорганизмов, их роли в инфекционном процессе, а также содержит сведения об антибиотиках и механизмах их действия. Часть пятая – «Учение об иммунитете» – содержит современные представления об иммунитете. В шестой части – «Вирусы и вызываемые ими заболевания» – представлены сведения об основных биологических свойствах вирусов и о тех заболеваниях, которые они вызывают. Часть седьмая – «Частная медицинская микробиология» – содержит сведения о морфологии, физиологии, патогенных свойствах возбудителей многих инфекционных заболеваний, а также о современных методах их диагностики, специфической профилактики и терапии.Учебник предназначен для студентов, аспирантов и преподавателей высших медицинских учебных заведений, университетов, микробиологов всех специальностей и практических врачей.5-е издание, исправленное и дополненное

Медицинская микробиология, иммунология и вирусология читать онлайн бесплатно

Медицинская микробиология, иммунология и вирусология - читать книгу онлайн бесплатно, автор Сергей Бабичев

Заслуга выяснения механизма передачи возбудителей заболеваний через воздух принадлежит П. Н. Лащенкову. Он одним из первых установил, что при чихании, кашле и разговоре в воздух выбрасывается множество капелек жидкости, внутри которых содержатся микроорганизмы. Особенно важно, что эти мельчайшие капельки могут часами удерживаться в воздухе во взвешенном состоянии, т. е. образуют стойкие аэрозоли. В этих капельках за счет влаги микроорганизмы выживают дольше. Таким воздушно-капельным способом происходит заражение многими острыми респираторными заболеваниями, в том числе гриппом и корью, а также коклюшем, дифтерией, легочной чумой и т. д. Этот путь распространения возбудителей – одна из основных причин развития не только эпидемий, но и крупных пандемий гриппа, а в прошлом и легочной чумы.

Помимо капельного способа, распространение патогенных микробов через воздух может осуществляться «пылевым» путем. Находящиеся в выделениях больных (мокроте, слизи и т. п.) микроорганизмы окружены белковым субстратом, поэтому они более устойчивы к высыханию и другим факторам. Когда такие капли высыхают, они превращаются в своеобразную бактериальную пыль (внутри белкового субстрата сохраняются и выживают многие патогенные бактерии). Частички бактериальной пыли имеют обычно диаметр от 1 до 100 мкм. У частиц диаметром более 100 мкм сила тяжести превышает сопротивление воздуха, и они быстро оседают. Скорость переноса бактериальной пыли зависит от интенсивности сил воздушных перемещений. Пылевой путь играет особенно важную роль в эпидемиологии туберкулеза, дифтерии, туляремии и других заболеваний.

Количество микробов в воздухе варьирует в больших диапазонах – от нескольких бактерий до десятков тысяч их в 1 м3. В 1 г пыли может содержаться до 1 млн бактерий. Большое значение имеет чистота воздуха в операционных, реанимационных и перевязочных отделениях хирургических госпиталей. Общее количество микробов в операционной до операции не должно превышать 500 в 1 м3, а после операции – 1000 в 1 м3.

Для исследования микрофлоры воздуха используют различные методы: седиментационный (метод Коха), фильтрационный (воздух продувают через воду) и методы, основанные на принципе ударного действия воздушной струи с использованием специальных приборов (В. С. Киктенко, Л. М. Соколинского [и др.]). Последние методы наиболее надежны, так как позволяют точно определить количественное загрязнение воздуха микроорганизмами и изучить их видовой состав.

В настоящее время в биотехнологической промышленности широко используются различные микробы-продуценты, в том числе генетически модифицированные формы их. Поскольку эта технология связана с неизбежными периодическими выпусками (интродукциями) в открытую систему (воздух, вода, почва) генетически измененных форм микроорганизмов, возникает важный вопрос об их дальнейшей судьбе и о возможном влиянии на биосферу и человечество. Несомненно, этот вопрос как часть общего вопроса охраны окружающей среды должен решаться в глобальном плане.

Роль микроорганизмов в круговороте веществ в природе

Предполагается, что в предбиологический период атмосферные газы находились в восстановленном состоянии: азот – в форме аммиака (NH3); кислород – в составе воды (H2O); углерод – в форме метана (СН4). Современное их состояние в виде окисленных форм: азота и кислорода в форме простых газов (N2 и О2), а углерода в виде оксида углерода (СО2) – в значительной степени является следствием активности живых организмов, в том числе микробов. Количественное содержание в атмосфере N2, O2 и СО2, других химических элементов, обнаруженных на поверхности Земли и необходимых для жизни, отражает равновесие между их образованием и использованием в биологических и геологических процессах. Эти превращения происходят во всей биосфере, т. е. в той тонкой оболочке жизни на поверхности Земли, которая охватывает океаны, моря, пресные водоемы, почву континентов и нижнюю часть атмосферы и в которой только и содержатся живые организмы. Общего количества главных химических элементов, необходимых для жизни, в частности углерода и азота, имеющихся в атмосфере, при их одностороннем потреблении вряд ли хватило бы на миллионы лет.

Биосфера находится в более или менее устойчивом состоянии благодаря непрерывному притоку солнечной энергии и постоянному круговороту углерода, кислорода, азота, серы и фосфора. В целом эти процессы выглядят так. С помощью солнечной энергии фотосинтезирующие организмы превращают СО2 и другие неорганические вещества в глюкозу и другие органические соединения, которые прямо или косвенно служат источником энергии для всех других организмов. В свою очередь фотосинтезирующие организмы – одноклеточные водоросли (в основном, диатомовые и динофлагелляты), обитающие в океане, и высшие растения, растущие на суше, – служат источником питания для животных. Поэтому основные биологически важные элементы сохраняются в органическом состоянии в ходе превращений, которые приводят к включению этих элементов в клетки и ткани животных. Чтобы снова стать доступными для фотосинтезирующих организмов, органические вещества должны снова перейти в неорганическую форму, т. е. подвергнуться минерализации. Эти превращения происходят из-за разложения (гниения) растительных и животных остатков, осуществляемого главным образом микроорганизмами. Подсчитано, что минерализация 90 % органического углерода, т. е. превращение его в СО2, осуществляется микроорганизмами. Остальные 10 % СО2 образуются в результате дыхания других организмов, а также за счет сгорания топлива и других материалов. Микроорганизмы, благодаря легкости их расселения по воздуху и воде, распространены по всей биосфере, и вследствие их чрезвычайно высокой метаболической активности они играют главную роль в химических превращениях, которые происходят на поверхности Земли. Подсчитано, что метаболический потенциал микроорганизмов в верхнем 15-сантиметровом слое одного гектара хорошо удобренной почвы в любой момент времени эквивалентен метаболическому потенциалу нескольких десятков тысяч людей.

Другим важным фактором, определяющим роль микроорганизмов в природе, является высокая скорость их размножения при благоприятных условиях.

Под круговоротом веществ в природе понимают циклические превращения химических элементов, из которых построены живые существа, происходящие вследствие разнообразия и гибкости метаболизма микроорганизмов. По-видимому, в природе нет таких органических веществ, которые не разрушались бы теми или иными микроорганизмами.

Круговорот азота и микробы, участвующие в нем

Запасы азота в природе очень велики. Он входит в состав всех организмов на Земле. Общее содержание его в организмах составляет более 25 млрд тонн, большое количество азота находится также в почве. Но еще более грандиозен запас азота в атмосфере: над каждым гектаром почвы поднимается столб воздуха, содержащий около 80 000 тонн молекулярного азота. Ежегодно на образование вновь вырастающих растений требуется около 1,5 млрд тонн азота в форме, доступной для усвоения растениями. Имеющегося в воздухе и почве азота хватило бы для обеспечения урожая, даже при одностороннем использовании, на несколько миллионов лет. Однако растения часто дают низкие урожаи именно из-за недостатка азота в почве. Это объясняется тем, что только небольшая группа азотистых соединений может быть быстро усвоена растениями. Не только свободный азот, но и многие формы связанного азота не могут служить источником азотного питания для растений. Азот, поступающий в виде белковых веществ в почву вместе с остатками растений и животных, совсем не годится для этих целей, он должен быть подвергнут минерализации, а образующийся при этом аммиак должен быть окислен в соли азотистой и азотной кислот. В основе процессов круговорота азота лежат следующие биохимические процессы: гниение белков, разложение мочевины, нитрификация, денитрификация и фиксация атмосферного азота.

Гниение, или аммонификация белков, – микробиологический процесс, при котором под воздействием гнилостных микроорганизмов происходит гидролитическое расщепление белков, поступающих в почву с трупами животных и отмирающими растениями, с образованием промежуточных продуктов (альбумоз, пептонов, амино– и амидокислот), а также дурно пахнущих веществ – индола, сероводорода, меркаптана, летучих жирных кислот.

Конечным продуктом гидролиза белков и дезаминирования аминокислот является NH3, почему этот процесс и называется аммонификацией белка. Таким образом, при гниении происходит минерализация белковых веществ, которая в зависимости от химического состава белков субстрата, вида гнилостных бактерий и условий их жизнедеятельности может быть полной или не доведенной до конца. При полной минерализации белка образуются H2O, CO2, NH3, H2S и минеральные соли. При широком доступе кислорода продукты гидролиза белков подвергаются полному окислению, зловонных веществ образуется значительно меньше, чем при анаэробных условиях. Такой процесс называется тлением.


Сергей Бабичев читать все книги автора по порядку

Сергей Бабичев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Медицинская микробиология, иммунология и вирусология отзывы

Отзывы читателей о книге Медицинская микробиология, иммунология и вирусология, автор: Сергей Бабичев. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.