Биохимические системы человека могут образовывать жирные кислоты из углеводов и аминокислот. Однако, как было обнаружено в исследованиях, проводившихся в 1930-х годах, наш организм не способен к синтезу трех жирных кислот – линолевой, линоленовой и арахидоновой, необходимых для клеточных мембран. Эти полиненасыщенные жирные кислоты обязательно, как и витамины, должны поступать с пищей. Они были обозначены как незаменимые. Потребность взрослого человека в этих жирных кислотах не превышает 1 г в сутки. В общей литературе по проблемам питания и по физиологии принято делить жирные кислоты на несколько групп в зависимости от длины их углеводородной цепочки и числа двойных (ненасыщенных) связей в составе этих цепочек. Содержащаяся в наибольшем количестве в запасных жирах млекопитающих стеариновая кислота, СН3(СН2)16СООН, не имеющая двойных связей, обозначается символом 18:0, где первая цифра говорит о числе углеводородных атомов, а вторая указывает число двойных связей. В тканях человека из этой группы насыщенных жирных кислот наиболее известны каприловая (10:0), лауриновая (12:0), миристиновая (14:0) и пальмитиновая (16:0). Ко второй группе относятся жидкие (при комнатной температуре) мононенасыщенные жирные кислоты, имеющие в своей углеводородной цепи лишь одну двойную связь. Наиболее распространенной среди них является олеиновая кислота, СН3(СН2 )7СН=СН(СН2)7СООН, символ которой 18:1 показывает одну двойную связь. В тканях человека есть несколько жирных кислот этого типа с цифровыми символами: 20:1, 22:1 и 24:1. К следующей группе относятся жидкие полиненасыщенные жирные кислоты, имеющие в составе своей углеводородной цепи две, три, четыре, пять или даже шесть двойных связей: 18:2, 20:2, 20:3, 20:4, 20:5, 22:4, 22:5, 22:6. Линолевая кислота (18:2), относящаяся к этой группе, является незаменимой. Двойные связи в составе жирных кислот играют роль своеобразных молекулярных суставов. Насыщенные жирные кислоты имеют форму устойчивого стержня. Ненасыщенные жирные кислоты могут сгибаться по месту менее прочной двойной связи. Именно эта эластичность создает молекулярные вибрации и жидкое состояние. Чем больше двойных связей в жирных кислотах, тем ниже температура застывания жира. Эта особенность важна для функций клеточных мембран. Однако из-за наличия двойных связей, то есть свободных ненасыщенных валентностей в молекулах, они легче подвергаются окислению, меняющему их свойства и нарушающему функции клеточных мембран. Несколько теорий старения клеток связывают этот процесс с накоплением окислительных изменений в клеточных мембранах. Это, безусловно, справедливо для эритроцитов человека и других млекопитающих. Длительность их циркуляции в крови напрямую зависит от скорости накопления окислительных изменений в их мембранах. Прочность мембран уменьшается при окислении, и они разрушаются. Долгоживущие виды среди птиц и млекопитающих имеют более высокую пропорцию насыщенных жирных кислот в составе клеточных мембран [1].
Рыбные жиры и японское долгожительство
Лечебные свойства рыбных жиров были обнаружены в начале XIX в., задолго до открытия витаминов. Жиры, выделенные из печени трески, начали применять для лечения рахита у детей и костных заболеваний более 150 лет назад [2]. В начале XX в. проводилось много исследований диеты арктических народов, эскимосов и инуитов Канады и Исландии, которые, как обнаружилось, не болели атеросклерозом. Это обычно связывали с их преимущественно рыбной диетой. Жиры тюленей и других морских млекопитающих тоже имеют высокие пропорции ненасыщенных жирных кислот. Однако теория о способности рыбных жиров замедлять процессы старения сформировалась в результате изучения долгожительства японцев. В 1983 г. в опубликованных ВОЗ статистических ежегодниках «The World Health Report» Япония по ожидаемой продолжительности жизни (74,2 года для мужчин и 79,8 для женщин) оказалась на первом месте, опередив прежних рекордсменов Швейцарию и Швецию. Объяснить японское долгожительство какими-либо социальными или экономическими факторами было очень трудно. По уровню жизни населения Япония тогда заметно отставала от США и Западной Европы. Расходы на здравоохранение в расчете на каждого жителя были в Японии в два раза ниже, чем в Европе и в три раза ниже, чем в США. Пенсионное обеспечение японцев всегда было очень скромным. Отпуск японских рабочих не превышал двух недель, а продолжительность рабочей недели была на 11 часов больше, чем в развитых западных странах. Японцы испытывали больше стрессов из-за тесноты в жилищах, напряженной обстановки в учебных заведениях и на работе, в результате нередких для этой страны землетрясений и цунами. Частота инсультов в Японии в два раза выше, чем в Великобритании. Кароши, внезапная смерть на работе от перенапряжения, – это специфическое японское явление. В аналитическом обзоре «Почему японцы живут дольше?» британские эксперты не смогли найти четкого ответа на поставленный вопрос [3]. Так в условиях неопределенности и родилась, сначала в массовой прессе, «рыбная теория» японского долгожительства.
По общему вылову рыбы и по потреблению рыбы в ежедневной диете населения Япония до 1983 г. занимала первое место в мире. Каждый японец съедал в год около 70 кг рыбных продуктов, что составляло 6,3% общего баланса калорий. К этому уровню в Европе близко подходила лишь Исландия (6,0%), которая в 1984 г. оказалась на втором месте по ожидаемой продолжительности жизни мужчин и женщин. В Норвегии и Швеции, где наиболее развита рыболовная отрасль, доля рыбных калорий в диете была несколько ниже – 3,5 и 2,2%.
Уникальными в рыбных продуктах являются не белки, а жиры. В теле рыб жиры осуществляют несколько дополнительных функций, например выравнивают удельный вес тела и воды. В жирах рыб значительно больше жидких полиненасыщенных жирных кислот, чем в жирах теплокровных животных. При низкой температуре воды у холоднокровных рыб только жидкие жиры могут обеспечивать физиологические функции. Насыщенные твердые жиры, характерные для млекопитающих, подвергались бы кристаллизации в холодных северных водах. У рыб увеличено содержание альфа-линоленовой жирной кислоты (18:3), которая важна для функций нейронов и для образования гормонов из группы простагландинов.
Рыбная теория японского долгожительства быстро получила признание среди диетологов, хотя прямых доказательств ее справедливости не было. Настойчивые рекомендации по увеличению доли рыбных продуктов в диете имели успех. Вылов рыбы в реках, озерах, морях и океанах начал быстро расти и увеличился с 70 млн т в 1983 г. до 93 млн т в 1996-м [4]. Но это был пик. После 1997 г. вылов рыбы в естественных водоемах стал сокращаться, так как нарушилось ее биологическое воспроизводство. Вылов наиболее ценных пород рыб (сельди, сардин, тунца и трески) начал снижаться еще раньше. Рост потребления рыбных продуктов, однако, продолжался за счет искусственного выращивания некоторых пород рыб в морских запрудах (лососевые) и пресноводных водоемах (карп, угорь). В Норвегии для искусственного выращивания лососевых были отгорожены от моря несколько фиордов. К 2006 г. вылов рыбы в естественных водоемах не увеличился и ухудшился качественно. Вылов рыбы в искусственных запрудах и водоемах или на «рыбных фермах» (аquaculture) вырос до 60 млн т, из них 70% добыл Китай [5. P. 21 – 23]. Однако продукция рыбных ферм не является полноценной. Незаменимые жирные кислоты в составе жира рыб образуются в морских водорослях, а не в организме рыб. Рыбы в запрудах питаются комбикормами, а не планктоном. В жирах искусственно выращенных рыб накапливаются диоксины, ртуть, пестициды и другие вредные соединения. В США недавно был введен запрет на импорт некоторых рыбных продуктов из Китая в связи с их загрязнением канцерогенами и производными антибиотиков [6]. Антибиотики часто добавляются в искусственные водоемы для профилактики рыбных болезней, обычных в очень густой рыбной монокультуре.
Очень сильно сократился улов рыбы у японских рыбаков. В 1983 г. он составлял 12 793 000 т, и тогда почти половина улова приходилась на ценные породы рыб с высоким содержанием жира – сардины, макрель, сельдь, тунец и лососевые.
К 1990 г. тунец и сардины почти полностью исчезли из восточной части Тихого океана. В 2000 г. вылов рыбы японскими судами снизился до 5,7 млн т, а к 2005-му до 4,8 млн т, причем треть добычи составляли устрицы, креветки и другие мелкие прибрежные морские животные. По общему улову рыбы Япония оказалась на пятом месте в мире, уступив лидерство Китаю, Перу, Индонезии и США. Россия находилась на шестом месте в мире (3,4 млн т). По вылову ценных пород рыб она опережала Японию. Однако потребление рыбных продуктов населением Японии не уменьшалось. Привычный баланс поддерживался за счет импорта рыбы из Австралии, Тайваня, Кореи, Таиланда и даже из Норвегии, Испании и Италии. Японский спрос увеличил мировые цены на рыбные продукты в несколько раз. Российские дальневосточные рыбаки нередко продают свой улов на Хоккайдо.