MyBooks.club
Все категории

Ричард Фейнман - 2a. Пространство. Время. Движение

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Ричард Фейнман - 2a. Пространство. Время. Движение. Жанр: Физика издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
2a. Пространство. Время. Движение
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
137
Читать онлайн
Ричард Фейнман - 2a. Пространство. Время. Движение

Ричард Фейнман - 2a. Пространство. Время. Движение краткое содержание

Ричард Фейнман - 2a. Пространство. Время. Движение - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

2a. Пространство. Время. Движение читать онлайн бесплатно

2a. Пространство. Время. Движение - читать книгу онлайн бесплатно, автор Ричард Фейнман
Назад 1 2 3 4 5 ... 18 Вперед

2a. Пространство. Время. Движение

Глава 21

ГАРМОНИЧЕСКИЙ ОСЦИЛЛЯТОР

§ 1. Линейные дифференциаль­ные уравнения

§ 2. Гармонический осциллятор

§ 3. Гармоническое движение и движение по окружности

§ 4. Начальные условия

§ 5. Колебания под действием внешней силы

§ 1. Линейные дифференциальные уравнения

Обычно физику как науку делят на не­сколько разделов: механику, электричество и г. п., и мы «проходим» эти разделы один за дру­гим. Сейчас, например, мы «проходим» в основ­ном механику. Но то и дело происходят стран­ные вещи: переходя к новым разделам физики и даже к другим наукам, мы сталкиваемся с уравнениями, почти не отличающимися от уже изученных нами ранее. Таким образом, многие явления имеют аналогию в совсем других об­ластях науки. Простейший пример: распро­странение звуковых волн во многом похоже на распространение световых волн. Если мы достаточно подробно изучим акустику, то обна­ружим потом, что «прошли» довольно большую часть оптики. Таким образом, изучение явле­ний в одной области физики может оказаться полезным при изучении других ее разделов. Хорошо с самого начала предвидеть такое воз­можное «расширение рамок раздела», иначе мо­гут возникнуть недоумения, почему мы тратим столько времени и сил на изучение небольшой задачи механики.

Гармонический осциллятор, к изучению ко­торого мы сейчас переходим, будет встречаться нам почти всюду; хотя мы начнем с чисто меха­нических примеров грузика на пружинке, ма­лых отклонений маятника или каких-то других механических устройств, на самом деле мы бу­дем изучать некое дифференциальное уравне­ние. Это уравнение непрестанно встречается в физике и в других науках и фактически описы­вает столь многие явления, что, право же, стоит того, чтобы изучить его получше. Такое уравне­ние описывает колебания грузика на пружинке, колебания заряда, текущего взад и вперед по электрической цепи, колебания камертона, порождающие звуковые волны, аналогичные колебания электронов в атоме, порождающие световые волны. Добавьте сюда уравнения, описывающие дей­ствия регуляторов, например поддерживающих заданную температуру термостата, сложные взаимодействия в химиче­ских реакциях и (уже совсем неожиданно) уравнения, от­носящиеся к росту колонии бактерий, которых одновременно и кормят и травят ядом, или к размножению лис, питаю­щихся кроликами, которые в свою очередь едят траву, и т. д. Мы привели очень неполный список явлений, которые описы­ваются почти теми же уравнениями, что и механический осцил­лятор. Эти уравнения называются линейными дифференциаль­ными уравнениями с постоянными коэффициентами. Это урав­нения, состоящие из суммы нескольких членов, каждый из которых представляет собой производную зависимой величины по независимой, умноженную на постоянный коэффициент. Таким образом,

называется линейным дифференциальным уравнением n-го порядка с постоянными коэффициентами (все аn посто­янные).

§ 2. Гармонический осциллятор

Пожалуй, простейшей механической системой, движение которой описывается линейным дифференциальным уравнением с постоянными коэффициентами, является масса на пружинке. После того как к пружинке подвесят грузик, она немного рас­тянется, чтобы уравновесить силу тяжести. Проследим теперь за вертикальными отклонениями массы от положения равнове­сия (фиг. 21.1).

Фиг. 21.1. Грузик, подвешенный на пружинке.

Простой пример гармонического ос­циллятора.

Отклонения вверх от положения равновесия мы обозначим через х и предположим, что имеем дело с абсо­лютно упругой пружиной. В этом случае противодействующие растяжению силы прямо пропорциональны растяжению. Это означает, что сила равна -kx (знак минус напоминает нам, что сила противодействует смещениям). Таким образом, умно­женное на массу ускорение должно быть равно -kx

m(d2x/dt2)=-kx. (21.2)

Для простоты предположим, что вышло так (или мы нужным образом изменили систему единиц), что k/m = 1. Нам предстоит решить уравнение

d2x/dt2=-x. (21.3)

После этого мы вернемся к уравнению (21.2), в котором k и m содержатся явно.

Мы уже сталкивались с уравнением (21.3), когда только начи­нали изучать механику. Мы решили его численно [см. вып. 1, уравнение (9.12)], чтобы найти движение. Численным интегри­рованием мы нашли кривую (см. фиг. 9.4, вып. 1), которая пока­зывает, что если частица m в начальный момент выведена из рав­новесия, но покоится, то она возвращается к положению рав­новесия. Мы не следили за частицей после того, как она достиг­ла положения равновесия, но ясно, что она на этом не остано­вится, а будет колебаться (осциллировать). При численном ин­тегрировании мы нашли время возврата в точку равновесия: t=1,570. Продолжительность полного цикла в четыре раза боль­ше: t0=6,28 «сек». Все это мы нашли численным интегрирова­нием, потому что лучше решать не умели. Но математики дали в наше распоряжение некую функцию, которая, если ее про­дифференцировать дважды, переходит в себя, умножившись на -1. (Можно, конечно, заняться прямым вычислением таких функций, но это много труднее, чем просто узнать ответ.)

Эта функция есть: x=cost. Продифференцируем ее: dx/dt=-sint, a d2x/dt2 =-wt=-x. В начальный момент t=0, x=1, а начальная скорость равна нулю; это как раз те пред­положения, которые мы делали при численном интегрирова­нии. Теперь, зная, что x=cost, найдем точное значение вре­мени, при котором z=0. Ответ: t=p/2, или 1,57108. Мы ошиб­лись раньше в последнем знаке, потому что численное интег­рирование было приближенным, но ошибка очень мала!

Чтобы продвинуться дальше, вернемся к системе единиц, где время измеряется в настоящих секундах. Что будет реше­нием в этом случае? Может быть, мы учтем постоянные k и т, умножив на соответствующий множитель cost? Попробуем. Пусть x=Acost, тогда dx/dt=-Asint и d2t/dt2=-Acost=-x. К нашему огорчению, мы не преуспели в решении уравнения (21.2), а снова вернулись к (21.3). Зато мы открыли важнейшее свойство линейных дифференциальных уравнений: если умно­жить решение уравнения на постоянную, то мы снова получим решение. Математически ясно — почему. Если х есть решение уравнения, то после умножения обеих частей уравнения на А производные тоже умножатся на A и поэтому Ах так же хорошо удовлетворит уравнению, как и х. Послушаем, что скажет по этому поводу физик. Если грузик растянет пружинку вдвое больше прежнего, то вдвое возрастет сила, вдвое возрастет ус­корение, в два раза больше прежней будет приобретенная ско­рость и за то же самое время грузик пройдет вдвое большее рас­стояние. Но это вдвое большее расстояние — как раз то самое расстояние, которое надо пройти грузику до положения равно­весия. Таким образом, чтобы достичь равновесия, требуется столько же времени и оно не зависит от начального смещения. Иначе говоря, если движение описывается линейным уравне­нием, то независимо от «силы» оно будет развиваться во вре­мени одинаковым образом.

Ошибка пошла нам на пользу — мы узнали, что, умножив решение на постоянную, мы получим решение прежнего уравне­ния. После нескольких проб и ошибок можно прийти к мысли, что вместо манипуляций с х надо изменить шкалу времени. Иначе говоря, уравнение (21.2) должно иметь решение вида

x=cosw0t. (21.4)

(Здесь w0 — вовсе не угловая скорость вращающегося тела, но нам не хватит всех алфавитов, если каждую величину обозна­чать особой буквой.) Мы снабдили здесь w индексом 0, потому что нам предстоит встретить еще много всяких омег: запомним, что w0 соответствует естественному движению осциллятора. Попытка использовать (21.4) в качестве решения более успешна, потому что dx/dt=-(w0sinw0t и d2x/dt2=-w20wsw0t=-w20x. На­конец-то мы решили то уравнение, которое и хотели решить. Это уравнение совпадает с (21.2), если w20=k/m.

Теперь нужно понять физический смысл w0. Мы знаем, что косинус «повторяется» после того, как угол изменится на 2я. Поэтому x=cosw0t будет периодическим движением; полный цикл этого движения соответствует изменению «угла» на 2p. Величину w0t часто называют фазой движения. Чтобы изменить w0t на 2p, нужно изменить t на t0 (период полного колебания); конечно, t0находится из уравнения w0t0=2p. Это значит, что w0t0 нужно вычислять для одного цикла, и все будет повто­ряться, если увеличить t на t0; в этом случае мы увеличим фазу на 2p. Таким образом,

Назад 1 2 3 4 5 ... 18 Вперед

Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


2a. Пространство. Время. Движение отзывы

Отзывы читателей о книге 2a. Пространство. Время. Движение, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.