MyBooks.club
Все категории

Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории. Жанр: Физика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
9 сентябрь 2019
Количество просмотров:
177
Читать онлайн
Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории краткое содержание

Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - описание и краткое содержание, автор Брайан Грин, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому. Брайан Грин срывает завесу тайны с теории струн, чтобы представить миру 11-мерную Вселенную, в которой ткань пространства рвётся и восстанавливается, а вся материя порождена вибрациями микроскопических струн.

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории читать онлайн бесплатно

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - читать книгу онлайн бесплатно, автор Брайан Грин

20

Знающий читатель поймёт, что в данной главе рассматривается только пертурбативная теория струн; выходящие за рамки теории возмущений аспекты обсуждаются в главах 12 и 13.

21

Стандартная модель предлагает механизм, дающий частицам массу, так называемый механизм Хиггса, получивший своё имя в честь шотландского физика Питера Хиггса. Однако с точки зрения объяснения значений масс частиц, задача здесь просто перекладывается на гипотетическую «частицу, дающую массу» — хиггсовский бозон. В настоящее время ведутся поиски этой частицы (найден в 2013 г. Psychedelic), но, опять же, даже если удастся обнаружить её и определить её свойства, они будут представлять собой входные данные для стандартной модели, не имеющие никакого теоретического объяснения.

22

Основываясь на догадках, сделанных в ходе второй революции в теории суперструн (обсуждаемой в главе 12), Виттен и Джо Ликкен (из Национальной лаборатории высокоэнергетических исследований) нашли маленькую, но возможную лазейку в этом заключении. Используя её, Ликкен предположил, что струны могут находиться под гораздо меньшим натяжением, и, следовательно, иметь гораздо больший размер, чем считалось первоначально. В действительности они могут оказаться столь большими, что могут быть обнаружены с помощью ускорителей частиц следующего поколения. Если эта маловероятная возможность окажется реальностью, открываются волнующие перспективы того, что многие замечательные следствия теории струн, обсуждаемые в этой и в последующих главах, смогут быть экспериментально проверены в течение ближайшего десятилетия. Но, как мы увидим в главе 9, даже в случае более «традиционного» сценария, разделяемого специалистами по теории струн, согласно которому струны обычно имеют длину порядка 10−33 см, остаются косвенные методы экспериментальной проверки.

23

Старейшая игра на американском телевидении, напоминающая «Поле Чудес» с Леонидом Якубовичем. Боб Баркер более 30 лет является бессменным ведущим этой игры. (Прим. перев.)

24

Знающий читатель поймёт, что фотон, образовавшийся при столкновении электрона и позитрона, является виртуальным и, следовательно, должен быстро высвободить свою энергию путём образования пары частица-античастица.

25

Конечно, камера работает, улавливая отражающиеся от интересующих нас объектов фотоны и регистрируя их на фотоплёнке. Использование камеры в этом примере является символическим, поскольку мы не представляем себе фотонов, отражающихся от сталкивающихся струн. Мы просто хотим зарегистрировать на рис. 6.7в всю историю взаимодействия. Сказав это, мы должны обратить ваше внимание на один тонкий момент, о котором умалчивает обсуждение в основном тексте. В главе 4 мы узнали, что квантовая механика может быть сформулирована с использованием фейнмановского метода суммирования по траекториям, в котором движение объектов анализируется путём суммирования вклада всех возможных траекторий, ведущих от выбранной начальной точки к некоторой конечной (каждой траектории в методе Фейнмана сопоставляется статистический вес). На рис. 6.6 и 6.7 мы показали вклад бесконечного числа возможных траекторий, по которым точечные частицы (рис. 6.6) или струны (рис. 6.7) следуют от начальной точки к пункту назначения. Однако приводимое в разделе обсуждение в равной мере применимо и к любой другой возможной траектории, а значит и ко всему квантово-механическому процессу в целом.

26

Один тонкий момент, относящийся к рис. 7.1, состоит в том, что на этом рисунке интенсивность слабого взаимодействия занимает промежуточное положение между интенсивностью сильного и электромагнитного взаимодействия, хотя ранее говорилось, что она слабее всех. Объяснение этому можно найти в табл. 1.2, из которой видно, что частицы-переносчики слабого взаимодействия являются достаточно массивными, тогда как частицы, передающие сильное и электромагнитное взаимодействие, являются безмассовыми. В действительности интенсивность слабого взаимодействия (определяемая соответствующей константой — идея, с которой мы столкнёмся в главе 12) является такой, как показано на рис. 7.1, но массивная частица, передающая это взаимодействие, довольно пассивно выполняет свои функции, что приводит к уменьшению интенсивности этого вида взаимодействия. В главе 14 мы увидим, как вписывается в картину рис. 7.1 гравитационное взаимодействие.

27

Амелия Эрхарт (Amelia Earhart) — первая американка, совершившая в одиночку перелёт через Атлантический океан. В 1935 г. совершила рекордный одиночный перелёт с Гавайских островов в Калифорнию. Пропала без вести в районе Новой Гвинеи при попытке совершить первый перелёт вокруг света. (Прим. перев.)

28

Во многих американских городах улицы образуют прямоугольную сеть. Улицы, идущие в одном направлении, называются «стрит», в другом (перпендикулярном первому) — «авеню». Классическим примером такой планировки является центральная часть Нью-Йорка. (Прим. перев.)

29

Это простая идея, однако, поскольку несовершенство нашего обычного языка приводит иногда к недопониманию, приведём два пояснения. Во-первых, мы считаем, что муравей живёт на поверхности садового шланга. Если бы муравей мог зарываться вглубь шланга, т. е. если бы он мог проникать внутрь резины, из которой сделан шланг, нам бы потребовалось три числа, чтобы указать его местоположение, поскольку нужно было бы указать, как глубоко он закопался. Однако если муравей живёт только на поверхности шланга, то чтобы указать его положение, достаточно двух чисел. Отсюда следует необходимость второго пояснения. Даже тогда, когда муравей живёт на поверхности шланга, мы можем, если захотим, указывать его положение с помощью трёх чисел: обычных положений в направлениях влево-вправо, вперёд-назад и вверх-вниз в нашем привычном трёхмерном пространстве. Однако когда известно, что муравей живёт на поверхности шланга, два числа, упомянутые в тексте, представляют собой минимальный набор величин, однозначно определяющих положение муравья. Именно это имелось в виду, когда мы говорили, что поверхность шланга двумерна.

30

В оригинале «Flatland», от англ. «flat» — плоский. (Прим. перев.)

31

В оригинале «Lineland», от англ. «line» — линия. (Прим. перев.)

32

В оригинале «Calabi — Yau shapes». (Прим. перев.)

33

Сказав это, следует помнить о возможности, что струны могут иметь значительно больший размер, чем считалось первоначально, и, следовательно, могут стать объектом прямого экспериментального изучения на ускорителях в течение ближайших десятилетий.

34

В оригинале «Large Hadron Collider». Коллайдер — ускоритель на встречных пучках, а адроны — частицы, участвующие в сильном взаимодействии. (Прим. перев.)

35

В 2002 г. экспериментально установлено, что нейтрино обладают (очень малой) массой. (Прим. ред.)

36

Некоторые идеи этого и нескольких следующих разделов довольно нетривиальны, так что читателя не должно смущать то, что какие-то логические звенья в цепочке объяснений могут оказаться непонятными (особенно при первом чтении).

37

Английский термин «winding number» переводят по-разному: «число намоток», «индекс намотки», «топологический индекс», «топологическое число» и т. д. Мы будем переводить его как «топологическое число», подчёркивая связь с различными конфигурациями струны, которые нельзя получить одну из другой путём непрерывной деформации. (Прим. перев.)

38

В русскоязычной литературе более распространённым является термин «кротовые норы». (Прим. ред.)

39

В оригинале «flop-transition». Некоторые термины, используемые автором в этой и следующих главах, не являются общепринятыми (и/или ещё не имеют русского эквивалента): мы подошли к обсуждению вопросов, касающихся последних достижений в физике и математике. (Прим. перев.)

40

Читателям, пропустившим раздел «Более точный ответ» в главе 6, рекомендуется пролистать его начало.

41

Точнее, каждая пара виртуальных струн, т. е. каждая петля конкретной диаграммы, приводит (наряду с другими более сложными слагаемыми) к мультипликативному вкладу, пропорциональному константе связи струны. Чем больше петель, тем выше показатель степени константы связи струны в ответе. Если константа связи струны меньше 1, повторные умножения сделают вклад следующих петель меньше, в противном случае эти вклады будут того же порядка или будут растут с числом петель.


Брайан Грин читать все книги автора по порядку

Брайан Грин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории отзывы

Отзывы читателей о книге Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории, автор: Брайан Грин. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.