MyBooks.club
Все категории

Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории. Жанр: Физика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
9 сентябрь 2019
Количество просмотров:
177
Читать онлайн
Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории краткое содержание

Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - описание и краткое содержание, автор Брайан Грин, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому. Брайан Грин срывает завесу тайны с теории струн, чтобы представить миру 11-мерную Вселенную, в которой ткань пространства рвётся и восстанавливается, а вся материя порождена вибрациями микроскопических струн.

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории читать онлайн бесплатно

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - читать книгу онлайн бесплатно, автор Брайан Грин

61

David Gross, «Superstrings and Unification». Опубликовано в «Proceedings of the XXIV International Conference on High Energy Physics», ed. R. Kotthaus and J. Kuhn. Berlin: Springer-Verlag, 1988, p. 329.

62

Для читателя, имеющего математическую подготовку, заметим, что согласно более точной математической формулировке число семейств равно половине абсолютного значения числа Эйлера для пространства Калаби — Яу. Число Эйлера представляет собой сумму размерностей групп гомологий многообразия, где группы гомологий это то, что мы на нашем нестрогом языке назвали многомерными отверстиями. Таким образом, количество семейств, равное трём, следует из того, что число Эйлера для этих пространств Калаби — Яу равно ±6.

63

Интервью с Джоном Шварцем, 23 декабря 1997 г.

64

Для читателя, имеющего математическую подготовку, заметим, что мы ставим в соответствие многообразию Калаби — Яу конечную нетривиальную фундаментальную группу, порядок которой в некоторых случаях определяет знаменатель дробного заряда.

65

Интервью с Эдвардом Виттеном, 4 марта 1998 г.

66

Для читателей, хорошо знакомых с рассматриваемыми вопросами, заметим, что некоторые из этих процессов нарушают закон сохранения лептонного числа, а также CPT-симметрию (инвариантность относительно изменения знака заряда, чётности и направления времени).

67

Отметим для полноты, что хотя большая часть приведённых выше аргументов в равной степени справедлива как для открытых струн (струн со свободными концами), так и для замкнутых струн (которым мы уделяли основное внимание), в рассматриваемом вопросе два типа струн могут, кажется, проявлять различные свойства. Действительно, открытая струна не может быть «насажена» на циклическое измерение. Тем не менее, в результате исследований, сыгравших в конце концов ключевую роль во второй революции суперструн, Джо Польчински из Калифорнийского университета в городе Санта-Барбара и двое его студентов, Джиан-Хюи Дай и Роберт Лей, в 1989 г. продемонстрировали, что открытые струны прекрасно вписываются в схему, которая будет описана в данной главе.

68

Чтобы ответить на вопрос о том, почему возможные энергии однородных колебаний равны целым кратным 1/R, достаточно лишь вспомнить обсуждение квантовой механики (в частности, примера с ангаром) в главе 4. Там мы узнали о том, что согласно квантовой механике энергия, как и деньги, существуют в виде дискретных порций, т. е. в виде целых кратных различных энергетических единиц. В случае однородного колебательного движения струны во вселенной Садового шланга эта энергетическая единица в точности равна 1/R, как объясняется в основном тексте на основе соотношения неопределённостей. Таким образом, энергия однородных колебаний равна произведению целых чисел на 1/R.

69

Математически равенство энергий струн во вселенной с радиусом циклического измерения R или 1/R есть следствие формулы для энергии υ/R + ωR, где υ — колебательное число, а ω — топологическое число. Данное уравнение инвариантно относительно одновременных взаимных замен υ на ω и R на 1/R, т. е. при перестановке колебательных и топологических чисел с одновременной инверсией радиуса. Мы используем планковские единицы, но можно работать и в более привычных единицах, если переписать формулу для энергии через так называемую струнную шкалу √α` значение которого примерно равно планковской длине, т. е. 10−33 сантиметра. В результате энергия записывается в виде выражения υ/R + ωR/α', инвариантного относительно взаимной замены υ на ω и R на α'/R, где последние две величины выражены в стандартных единицах расстояния.

70

У читателя может возникнуть вопрос, каким образом с помощью струны, намотанной вокруг циклического измерения радиусом R, можно измерить значение радиуса 1/R. Хотя этот вопрос совершенно правомерен, ответ на него, в действительности, заключается в том, что сам вопрос сформулирован некорректно. Когда мы говорим, что струна намотана на окружность радиуса R, мы с необходимостью используем определение расстояния (чтобы фраза «радиус R» имела смысл). Однако это определение расстояния относится к модам ненамотанной струны, т. е. к колебательным модам. С точки зрения этого определения расстояния (и только этого!) конфигурация намотанной струны выглядит так, что струна обёрнута вокруг циклической компоненты пространства. Однако с точки зрения другого определения расстояния, соответствующего конфигурациям намотанных струн, топологические моды точно так же локализованы в пространстве, как и колебательные моды с точки зрения первого определения, и радиус, который они «видят», равен 1/R, что и отмечено в тексте.

Эти пояснения дают некоторое представление о том, почему расстояния, измеренные с помощью намотанных и ненамотанных струн, обратно пропорциональны друг другу. Однако, так как данный момент достаточно тонкий, возможно, имеет смысл привести технические подробности для читателя, склонного к математическому образу мышления. В обычной квантовой механике точечных частиц расстояние и импульс (по существу, энергия) связаны преобразованием Фурье. Иными словами, собственный вектор оператора координаты  на окружности радиусом R можно определить как , где p = υ/R, а  есть собственный вектор оператора импульса (прямой аналог того, что мы называли общей колебательной модой струны — движение без изменения формы). В теории струн, однако, есть ещё один собственный вектор оператора координаты , определяемый состояниями намотанной струны: , где  — собственный вектор для намотанной струны с . Из этих определений немедленно следует, что x периодична с периодом 2πR, а  периодична с периодом 2π/R, так что x есть координата на окружности радиусом R, а  — координата на окружности радиусом 1/R. Более конкретно, можно рассмотреть два волновых пакета  и , распространяющихся из начала координат и эволюционирующих во времени, с помощью которых можно дать практическое определение расстояния. Радиус окружности, измеренный с помощью каждого из пакетов, будет пропорционален времени возвращения пакета в исходную точку. Так как состояние с энергией E эволюционирует с фазовым множителем, пропорциональным Et, видно, что время, а, следовательно и радиус, равны t ~ 1/E ~ R для колебательных мод и t ~ 1/E ~ 1/R для топологических мод.

71

Для читателя, сведущего в математике, отметим, что число семейств колебательных мод струны равно половине абсолютного значения эйлеровой характеристики многообразия Калаби — Яу, как указано в примечании {62}. Эта величина равна абсолютному значению разности h2,1 и h1,1, где hp,q обозначает число Ходжа (p,q). С точностью до константы эти значения равны числу нетривиальных гомологий 3-циклов (трёхмерных отверстий) и числу гомологий 2-циклов (двумерных отверстий). Таким образом, хотя в основном содержании говорится о полном числе отверстий, более точный анализ показывает, что число семейств зависит от абсолютного значения разности между числами чётномерных и нечётномерных отверстий. Выводы, однако, те же самые. Например, если два пространства Калаби — Яу отличаются перестановкой соответствующих чисел Ходжа h2,1 и h1,1, то число семейств частиц — полное число отверстий — не изменится.

72

Название объясняется тем, что «ромбы Ходжа», математические выражения чисел отверстий различных размерностей для пространств Калаби — Яу, являются зеркальными отражениями друг друга для каждой зеркальной пары.

73

Термин зеркальная симметрия используется в физике и в других контекстах, совершенно не связанных с данным, например, в связи с понятием киральности, т. е. в связи с вопросом о том, является ли Вселенная инвариантной относительно замены правого на левое (см. примечание {44}).


Брайан Грин читать все книги автора по порядку

Брайан Грин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории отзывы

Отзывы читателей о книге Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории, автор: Брайан Грин. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.