MyBooks.club
Все категории

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Грин Брайан

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Грин Брайан. Жанр: Физика . Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории
Дата добавления:
17 сентябрь 2020
Количество просмотров:
177
Читать онлайн
Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Грин Брайан

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Грин Брайан краткое содержание

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Грин Брайан - описание и краткое содержание, автор Грин Брайан, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы–Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.

Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому. Брайан Грин срывает завесу тайны с теории струн, чтобы представить миру 11-мерную Вселенную, в которой ткань пространства рвётся и восстанавливается, а вся материя порождена вибрациями микроскопических струн.

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории читать онлайн бесплатно

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - читать книгу онлайн бесплатно, автор Грин Брайан

38

Величину планковской длины можно получить с использованием простых рассуждений, основанных на том, что физики называют размерным анализом. Идея состоит в следующем. Когда та или иная теория формулируется в виде набора уравнений, то чтобы теория приобрела связь с действительностью, абстрактным символам должны быть поставлены в соответствие физические характеристики реального мира. В частности, нужно ввести систему единиц измерения. Например, если мы обозначим некоторую длину символом a, то у нас должна быть шкала для интерпретации этого значения. В конце концов, если уравнение говорит нам, что искомая длина равна 5, мы должны знать, означает ли это 5 см, 5 км или 5 световых лет и т. п. В теории, которая включает в себя общую теорию относительности и квантовую механику, естественный выбор единиц измерения выглядит следующим образом. В природе есть две константы, которые входят в уравнения общей теории относительности: скорость света  cи ньютоновская гравитационная постоянная G. Квантовая механика определяется постоянной Планка ħ. Исследуя единицы, в которых выражены эти константы (например,  cпредставляет собой скорость и поэтому выражается как расстояние, делённое на время, и т. п.), можно заметить, что величина 

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - f_15.jpg
имеет размерность длины; её значение составляет 1,616 × 10 −33 см. Это и есть планковская длина. Поскольку она содержит гравитационный и пространственно-временной параметры ( Gи c), а также квантово-механическую константу ( ħ), она устанавливает шкалу для измерений (естественную единицу длины) для любой теории, которая пытается объединить общую теорию относительности и квантовую механику. Когда мы используем в тексте выражение «планковская длина», мы часто имеем в виду приближённое значение, отличающееся от 10 −33см не более чем на несколько порядков.

39

В настоящее время, помимо теории струн, активно развиваются два других подхода к объединению общей теории относительности и квантовой механики. Один из них, возглавляемый Роджером Пенроузом из Оксфордского университета, известен под названием теории твисторов. Другой подход, появление которого отчасти было инициировано работами Пенроуза, развивается Абхаем Аштекаром из университета штата Пенсильвания, и получил название метода новых переменных. Мы не будем рассматривать эти подходы в данной книге, однако появляются всё более обоснованные предположения о том, что они могут иметь глубокую связь с теорией струн, и, возможно, все три подхода ведут к одному и тому же решению проблемы объединения обшей теории относительности и квантовой механики.

40

Знающий читатель поймёт, что в данной главе рассматривается только пертурбативная теория струн; выходящие за рамки теории возмущений аспекты обсуждаются в главах 12 и 13.

41

Интервью с Джоном Шварцем, 23 декабря 1997 г.

42

Схожие предположения были независимо высказаны Тамиаки Йонея, а также Коркутом Бардакчи и Мартином Гальперном. Значительный вклад в разработку теории струн на ранних этапах её существования был также сделан шведским физиком Ларсом Бринком.

43

Интервью с Джоном Шварцем, 23 декабря 1997 г.

44

Интервью с Майклом Грином, 20 декабря 1997 г.

45

Стандартная модель предлагает механизм, дающий частицам массу, так называемый механизм Хиггса, получивший своё имя в честь шотландского физика Питера Хиггса. Однако с точки зрения объяснения значений масс частиц, задача здесь просто перекладывается на гипотетическую «частицу, дающую массу» — хиггсовский бозон. В настоящее время ведутся поиски этой частицы, но, опять же, даже если удастся обнаружить её и определить её свойства, они будут представлять собой входныеданные для стандартной модели, не имеющие никакого теоретического объяснения.

46

Для читателей, имеющих математическую подготовку, укажем, что связь между модами колебаний струны и константами взаимодействия может быть более точно описана следующим образом. При квантовании струны её возможные состояния, как и состояния любой квантово-механической системы, могут быть представлены векторами в гильбертовом пространстве. Эти векторы могут быть разложены по собственным значениям некоторого набора коммутирующих эрмитовых операторов. Среди этих операторов имеется гамильтониан, собственное значение которого даёт энергию и, следовательно, массу этой колебательной моды, а также операторы, генерирующие различные калибровочные симметрии этой теории. Собственные значения этих последних операторов и дают константы взаимодействия, которые несут соответствующие колебательные моды струны.

47

Основываясь на догадках, сделанных в ходе второй революции в теории суперструн (обсуждаемой в главе 12), Виттен и Джо Ликкен (из Национальной лаборатории высокоэнергетических исследований) нашли маленькую, но возможную лазейку в этом заключении. Используя её, Ликкен предположил, что струны могут находиться под гораздо меньшим натяжением, и, следовательно, иметь гораздо больший размер, чем считалось первоначально. В действительности они могут оказаться столь большими, что могут быть обнаружены с помощью ускорителей частиц следующего поколения. Если эта маловероятная возможность окажется реальностью, открываются волнующие перспективы того, что многие замечательные следствия теории струн, обсуждаемые в этой и в последующих главах, смогут быть экспериментально проверены в течение ближайшего десятилетия. Но, как мы увидим в главе 9, даже в случае более «традиционного» сценария, разделяемого специалистами по теории струн, согласно которому струны обычно имеют длину порядка 10 −33см, остаются косвенные методы экспериментальной проверки.

48

Знающий читатель поймёт, что фотон, образовавшийся при столкновении электрона и позитрона, является виртуальным и, следовательно, должен быстро высвободить свою энергию путём образования пары частица-античастица.

49

Конечно, камера работает, улавливая отражающиеся от интересующих нас объектов фотоны и регистрируя их на фотоплёнке. Использование камеры в этом примере является символическим, поскольку мы не представляем себе фотонов, отражающихся от сталкивающихся струн. Мы просто хотим зарегистрировать на рис. 6.7 ввсю историю взаимодействия. Сказав это, мы должны обратить ваше внимание на один тонкий момент, о котором умалчивает обсуждение в основном тексте. В главе 4 мы узнали, что квантовая механика может быть сформулирована с использованием фейнмановского метода суммирования по траекториям, в котором движение объектов анализируется путём суммирования вклада всехвозможных траекторий, ведущих от выбранной начальной точки к некоторой конечной (каждой траектории в методе Фейнмана сопоставляется статистический вес). На рис. 6.6 и 6.7 мы показали вклад бесконечного числа возможных траекторий, по которым точечные частицы (рис. 6.6) или струны (рис. 6.7) следуют от начальной точки к пункту назначения. Однако приводимое в разделе обсуждение в равной мере применимо и к любой другой возможной траектории, а значит и ко всему квантово-механическому процессу в целом. (Фейнмановская формулировка квантовой механики точечных частиц с использованием подхода, основанного на суммировании по траекториям, была обобщена на случай теории струн в работах Стэнли Мандельстама из университета штата Калифорния в Беркли и Александра Полякова, в настоящее время работающего на физическом факультете Принстонского университета.)


Грин Брайан читать все книги автора по порядку

Грин Брайан - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории отзывы

Отзывы читателей о книге Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории, автор: Грин Брайан. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.