Базовое уравнение Эйнштейна подразумевает, что во Вселенной, в которой вещество распределено более менее равномерно, пространство не может быть «статическим». Космос не может просто «лежать себе», как нам подсказывает наша интуиция да и все имеющиеся на тот момент результаты астрономических наблюдений. Нет, все пространство вокруг нас должно постоянно пребывать в состоянии либо расширения, либо сокращения: пространство должно вести себя как надувающийся сдувающийся воздушный шарик, но не как шарик, надутый раз и навсегда до определенного размера.
Это беспокоило Эйнштейна. В кои-то веки этот смелый теоретик, не испытывавший доверия к авторитетам и никогда не боявшийся бросить вызов идеям традиционной физики, почувствовал, что зашел слишком далеко. Ни одно астрономическое наблюдение не предполагало расширяющейся модели Вселенной, потому что на тот момент астрономы располагали лишь информацией о движении ближайших к нам звезд и еще не могли определить расстояния до тех объектов, которые сегодня мы называем галактиками. Вместо того чтобы объявить всему миру, что Вселенная должна либо расширяться, либо сокращаться в объеме, Эйнштейн вновь засел за свое уравнение в поисках способа придать космосу статичность.
Вскоре он его нашел. Базовое уравнение Эйнштейна допускало присутствие члена с постоянным, но неизвестным значением, который отражал количество энергии, содержащейся в каждом кубическом сантиметре пустого пространства. Так как ничто не указывало на то, что этой постоянной величине следовало приписать то иное значение, Эйнштейн изначально приравнял ее к нулю. Теперь же Эйнштейн опубликовал научную статью, в которой показывал: если бы у этой постоянной величины, которую ученые позднее назовут космологической постоянной, было определенное значение, тогда статическое пространство — в нашем случае не какое-нибудь, а космическое — возможно. Таким образом, противоречие теории Эйнштейна имеющимся на тот момент представлениям о Вселенной было исчерпано и уравнение можно было считать верным.
Однако предложенное Эйнштейном решение столкнулось с серьезными трудностями. В 1922 году российский математик Александр Фридман доказал, что статическая Вселенная Эйнштейна нестабильна, словно карандаш, стоящий на грифельном острие. Малейшее изменение — и пространство тут же начнет расширяться или сокращаться. Сначала Эйнштейн отверг написанное Фридманом, но позднее признал ошибочность своей оценки и опубликовал новую статью, отзывая критику и объявляя теорию Фридмана верной. В конце 1920-х годов Эйнштейн пришел в полный восторг, узнав об открытии Хабблом расширяющейся Вселенной. Как вспоминает Георгий Гамов, Эйнштейн назвал тогда космологическую постоянную своей грубейшей ошибкой. За исключением нескольких космологов, которые продолжали придерживаться ненулевого значения космологической постоянной (при этом отличного от того, что когда-то предлагал сам Эйнштейн) в попытках объяснить свои некоторые загадочные наблюдения. Большинство из них затем оказались неверными, ученые всего мира вздохнули с облегчением: оказывается, космическое пространство прекрасно обходится без этой самой постоянной.
Точнее, это они так думали. Главная и самая увлекательная космологическая история конца XX века — тот сюрприз, что схватил всех космологов мира за одно ухо, как непослушных мальчишек, и пропел им новую мелодию в другое, — заключается в удивительной находке. В 1998 году было объявлено, что для Вселенной действительно характерна ненулевая космологическая постоянная. В пустом пространстве действительно есть энергия, называемая темной энергией, и ее крайне необычные свойства и есть то самое, от чего зависит будущее всей Вселенной.
Чтобы принять на веру такие серьезные утверждения, мы должны проследить за ключевыми этапами мышления космологов, которые пришлись на следующие 70 лет после открытия Хабблом расширяющейся Вселенной. Фундаментальное уравнение Эйнштейна допускает возможность того, что пространство обладает кривизной, которой математически можно придать положительное, нулевое отрицательное значение. Нулевая кривизна характерна для «плоского пространства», того самого, которое нашему разуму кажется единственно возможным положением вещей. Это пространство бесконечно простирается во все стороны, словно поверхность школьной доски, у которой нет ни конца, ни края. Пространство с положительной кривизной — это аналог поверхности шара: двухмерное пространство, искривление которого можно обнаружить только при использовании третьего измерения. Обратите внимание: центр такого шара — точка, не меняющая своего расположения независимо от расширения или сокращения двухмерной поверхности, — находится в третьем измерении. Ее не найти на самой поверхности, которая в данном раскладе представляет собой все мировое пространство.
Все поверхности с положительной кривизной обладают не только некой конкретной ограниченной площадью, но и ограниченным объемом. Для положительно искривленного космоса характерна следующая особенность: если вы покинете Землю и отправитесь в путешествие, на которое отведено очень и очень много времени, вы рано поздно вернетесь в пункт отправления, как Магеллан, путешествующий вокруг света. В отличие от сферических поверхностей с положительной кривизной, отрицательно искривленные пространства простираются бесконечно, хоть и не являются плоскими. Двухмерная поверхность с отрицательной кривизной напоминает собой бесконечное конное седло: в одном направлении оно загибается «вверх» (сзади наперед), а в другом — «вниз» (справа налево).
Если космологическая постоянная равна нулю, нам хватит всего двух чисел того, чтобы описать общие свойства Вселенной. Одно такое число — постоянная Хаббла — измеряет скорость, с которой Вселенная расширяется в данный момент; другое отражает кривизну пространства. Во второй половине XX века почти все космологи верили в то, что космологическая постоянная равна нулю, и считали своей приоритетной задачей изучение скорости расширения и кривизны космического пространства.
Оба значения можно найти с помощью точного измерения скоростей, с которыми объекты, расположенные от нас на разных расстояниях, удаляются еще дальше. Связь между расстоянием и этой скоростью — то, как быстро скорость удаления от нас галактик растет с увеличением расстояния до них, — позволяет получить значение постоянной Хаббла, а незначительные отклонения от общей тенденции, которые можно обнаружить только при изучении наиболее удаленных от нас объектов, помогают определить кривизну пространства. Когда астрономы наблюдают за объектами в миллиардах световых лет от Млечного Пути, они смотрят в столь далекое прошлое, что видят Вселенную не такой, какая она сейчас, но такой, какой она была спустя гораздо меньшее время с момента Большого взрыва. Наблюдения за галактиками в пяти и более миллиардах световых лет от Млечного Пути позволяют космологам восстановить картину огромной части истории расширяющейся Вселенной, в том числе стать свидетелями того, как менялась скорость расширения со временем, что и есть ключ к определению типа и значения кривизны пространства. Этот инструмент действителен хотя бы потому, что степень искривления пространства провоцирует малозаметные изменения в скорости, с которой Вселенная расширялась на протяжении последних нескольких миллиардов лет.
На практике астрофизики пока не могли реализовать эту заманчивую программу: у них не было возможности с достаточной точностью назвать приблизительные расстояния до галактических кластеров в миллиардах световых лет от Земли. Правда, у них оставался один козырь: если бы им удалось измерить среднюю плотность всего вещества во Вселенной — среднее количество граммов вещества на один кубический сантиметр пространства, — они могли бы сравнить полученное число с «критической плотностью», значение которой было предсказано в описывающих расширяющуюся Вселенную уравнениях Эйнштейна. Критическая плотность определяет точную плотность вещества, соответствующую Вселенной с нулевой кривизной пространства. Если фактическая плотность оказывается выше этого значения — перед нами Вселенная с положительной кривизной. В таком случае (и при нулевой космологической постоянной) Вселенная в какой-то момент прекратит расширяться и начнет сокращаться. Если же фактическая плотность равняется критической или оказывается ниже ее значения, тогда Вселенная будет расширяться бесконечно. Полноценное равенство фактического и критического значения плотности возможно в космосе с нулевой кривизной, а во Вселенной с отрицательным искривлением фактическая плотность меньше критической.
К середине 1990-х годов космологи поняли, что, даже если учесть в расчетах всю темную материю, к тому моменту уже обнаруженную по ее гравитационному воздействию на обычное видимое вещество, суммарная плотность вещества в нашей Вселенной едва достигнет и четверти значения критической плотности. Результат не то что бы удивительный — он всего лишь подразумевает, что Вселенная никогда не перестанет расширяться и мы живем в космическом пространстве с отрицательной кривизной. Но это, безусловно, огорчило тех, кто уже привык считать, что кривизна пространства равна нулю.