где kx, kyи kz — компоненты вектора k по трем осям. Мы уже отмечали однажды, что на самом деле величины (w, kx, ky, kz) образуют четырехвектор и что его скалярное произведение на (t, x, у, z) является инвариантом. Таким образом, фаза волны есть инвариант и формулу (33.6) можно записать в виде
Однако сейчас нам такие хитрости не понадобятся.
Для синусоидального поля Е, подобного выражению (33.6), производная dE/дt — это то же самое, что и iwE, a дЕ/дх — то же, что и ikxE, и аналогично для остальных компонент. Вы видите, чем удобна форма (33.6): когда мы работаем с дифференциальными уравнениями, то дифференцирование заменяется простым умножением. Другое полезное качество состоит в том, что операция С=(д/дx), (д/ду), (д/дz) заменяется тремя умножениями (-ikx,-iky , -ikz). Но эти три множителя преобразуются как компоненты вектора k, так что оператор С заменяется умножением на
Правило остается справедливым для операции С в любой комбинации, будь то градиент, дивергенция или ротор. Например, z-компонента СXЕ равна
Если и Еуи Ехизменяются как e-ik·r, то мы получаем
-ikxEy+ikyEx,
что представляет, как вы видите, z-компоненту —ikXЕ.
Таким образом, мы получили очень полезный общий закон, что в любом случае, когда вам нужно взять градиент от вектора, который изменяется, как волна в трехмерном пространстве (а они в физике играют важную роль), эту операцию вы можете проделать быстро и почти без всяких раздумий, если вспомните, что оператор С эквивалентен умножению на —ik.
Например, уравнение Фарадея
СXЕ=дB/дt
превращается для волны в
— ikXЕ=-iwB. Оно говорит, что
В=kXE/w. (33.9)
Это соответствует результату, найденному ранее для волн в пустом пространстве, т. е. что вектор В в волне направлен под прямым углом к вектору Е и направлению распространения волны. (В пустом пространстве w/k=с.) Знак в уравнении (33.9) вы можете проверить, исходя из того, что k является направлением вектора Пойнтинга S=e0c2(EXВ).
Если вы примените то же самое правило к другим уравнениям Максвелла, то снова получите результаты последней главы, в частности
Но раз уже это известно нам, давайте не будем проделывать все сначала.
Если вы хотите поразвлечься, можете попытаться решить такую устрашающую задачу (в 1890 г. она предлагалась студентам на выпускных экзаменах): решите уравнения Максвелла для плоской волны в анизотропном кристалле, т. е. когда поляризация Р связана с электрическим полем Е через тензор поляризуемости. Конечно, в качестве ваших осей вы выберете главные оси тензора, так что связи при этом упростятся (тогда Рх=aaЕх, Ру=abЕу, a Pz=acEz), но направление волны и ее поляризация пусть останутся произвольными. Вы должны найти соотношение между Е и В и определить, как изменяется k с направлением распространения волны и ее поляризацией. После этого вам будет понятна оптика анизотропного кристалла. Лучше начать с более легкого случая дважды лучепреломляющего кристалла, подобного турмалину, для которого два коэффициента поляризуемости равны между собой (например, ab=ac), и попытаться понять, почему, когда мы смотрим через такой кристалл, мы видим два изображения. Если это вам удастся, тогда испытайте свои силы на более трудном случае, когда все три а различны. После этого вам уже будет ясен уровень ваших знаний — знаете ли вы столько же, сколько студент, заканчивавший университет в 1890 г. Но мы с вами в этой главе будем рассматривать только изотропные вещества.
Из опыта вам известно, что когда на границу раздела двух материалов, скажем воздуха и стекла или воды и бензина, попадает плоская волна, то возникают как отраженная, так и преломленная волны.
Предположим, что, кроме этого факта, нам больше ничего неизвестно, и посмотрим, что можно из него вывести. Выберем наши оси так, чтобы плоскость yz совпадала с поверхностью раздела, а плоскость ху была перпендикулярна фронту волны (фиг. 33.3).
Фиг. 33.3. Векторы, распространения k, k' и k" для падающей, отраженной и преломленной волн.
Электрический вектор в падающей волне может быть записан в виде
Поскольку вектор k перпендикулярен оси z, то
k·r=kxx+kyy. (33.12) Отраженную волну мы запишем как
так что ее частота равна w', волновое число k', а амплитуда Е'0. (Мы, конечно, знаем, что частота и величина вектора k в отраженной волне те же, что и в падающей волне, но не хотим предполагать даже это. Пусть это все получится само собой из математического аппарата.) Наконец, запишем преломленную волну:
Вы знаете, что одно из уравнений Максвелла дает соотношение (33.9), так что для каждой из волн
Кроме того, если показатели преломления двух сред мы обозначим через n1и n2, то из уравнения (33.10) получится
Поскольку отраженная волна находится в том же материале, то
в то время как для преломленной волны
§ 3. Граничные условия
Все что мы делали до сих пор, было описанием трех волн; теперь нам предстоит выразить параметры отраженной и преломленной волн через параметры падающей. Как это сделать?
Три описанные нами волны удовлетворяют уравнениям Максвелла в однородном материале, но, кроме того, уравнения Максвелла должны удовлетворяться и на границе между двумя материалами. Так что нам нужно сейчас посмотреть — что же происходит на самой границе. Мы найдем, что уравнения Максвелла требуют, чтобы три волны определенным образом согласовывались друг с другом.
Вот один из примеров того, что мы имеем в виду. Составляющая по оси у электрического поля Е должна быть одинакова по обеим сторонам границы. Это требуется законом Фарадея:
СXE=дB/дt, (33.19)
в чем нетрудно убедиться. Рассмотрим для этого маленькую петлю Г, которая с обеих сторон охватывает границу (фиг. 33.4).
Фиг. 33.4. Граничное условие Ey2=Ey1, полученное из равенства
Согласно уравнению (33.19), криволинейный интеграл от Е по петле Г равен скорости изменения потока В через эту петлю:
Вообразите теперь, что прямоугольник очень узок, так что он замыкается в бесконечно малой области. Если при этом поле В остается конечным (нет никаких причин ему быть бесконечным!), то поток через эту область будет равен нулю. Таким образом, контурный интеграл от Е должен быть нулем. Если y-компоненты поля на двух сторонах границы равны Еy1и Еy2, а длина прямоугольника равна l, то мы получаем
Ey1l-Ey2l=0
или
Еу1=Еу2, (33.20)
как мы и ожидали. Это условие дает нам одно соотношение между полями в трех волнах.
Процедура нахождения следствий уравнений Максвелла на границе называется «определением граничных условий». Обычно она заключается в нахождении стольких уравнений типа (33.20), сколько возможно, и выполняется она с помощью рассмотрении маленьких прямоугольников, подобных Г на фиг. 33.4, или маленьких гауссовых поверхностей, охватывающих границу с двух сторон. Хотя это совершенно правильный способ рассуждений, он создает впечатление, что в различных физических задачах с границами нужно обращаться по-разному.