MyBooks.club
Все категории

Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир. Жанр: Физика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Абсолютный минимум. Как квантовая теория объясняет наш мир
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
9 сентябрь 2019
Количество просмотров:
306
Читать онлайн
Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир

Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир краткое содержание

Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир - описание и краткое содержание, автор Майкл Файер, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Абсолютный минимум. Как квантовая теория объясняет наш мир читать онлайн бесплатно

Абсолютный минимум. Как квантовая теория объясняет наш мир - читать книгу онлайн бесплатно, автор Майкл Файер

Рис. 6.6.График вероятности обнаружения частицы в точке x, когда она находится в суперпозиции собственных состояний по импульсу, показанной на рис. 6.5. Точка x0 соответствует среднему положению с наибольшей вероятностью. Величинаx служит мерой ширины пространственного распределения


Что означает распределение вероятности положений (значений x)? Частица с распределением вероятности по импульсам, изображённым на рис. 6.5, даёт пространственное распределение вероятности, представленное на рис. 6.6. Одиночное измерение положения даёт конкретное значение координаты. Обозначим его x1. Выполнение измерения абсолютно малой квантовой частицы вызывает возмущение, которым нельзя пренебречь, что приводит к коллапсу пространственного распределения вероятности до собственного значения с чётко определённой координатой. Чтобы выполнить другое измерение, систему (частицу) надо подготовить заново прежним способом, тогда она будет иметь такое же распределение вероятности по импульсу и, следовательно, такое же пространственное распределение вероятностей. Второе измерение положения частицы даст значение x2, которое в общем случае не будет совпадать с x1. Если, подготавливая систему вновь и вновь, выполнить много измерений положения, обнаружится распределение вероятности по координате, изображённое на рис. 6.6. Величина ∆x служит мерой ширины пространственного распределения. Пространственное распределение, изображённое на рис. 6.6, определённое по множеству измерений идентично подготовленных систем, говорит о вероятности получить при измерении любое конкретное значение положения. С наибольшей вероятностью измерение обнаружит частицу где-то вблизи точки x0, но для любого отдельного измерения невозможно сказать, где будет найдена частица. В то же время мала вероятность получить при измерении положения значение, далёкое от x0.

Волновые пакеты

Частица, находящаяся в суперпозиции собственных состояний импульса, как это показано на рис. 6.5, называется волновым пакетом. Импульс её более или менее известен — с точностью до величины ∆p. Поскольку импульс — это произведение массы и скорости, а массу частицы мы знаем, то нам примерно известна её скорость. Чем больше ∆p (чем шире распределение импульсов в волновом пакете), тем хуже определён импульс, а значит, при отдельных измерениях будут получаться значения импульса, лежащие в более широком диапазоне. Волновой пакет также растянут и по положению. Частица не находится в конкретной точке x, как в классической физике. Существует разброс координат, задаваемый распределением вроде того, что изображён на рис. 6.6, а количественно его можно охарактеризовать шириной распределения ∆x.

Разброс по импульсу и координате

На рис. 6.7 изображены два волновых пакета. В верхней части показан волновой пакет, состоящий из сравнительно широкого распределения собственных состояний импульса. Большой разброс собственных состояний импульса (большое значение ∆p) приводит к относительно узкому пространственному распределению (малому значению ∆x). В нижней части рисунка показан волновой пакет, составленный из сравнительно узкого распределения собственных значений импульса (с малой величиной ∆p), что приводит к большому разбросу в пространственном распределении (большой величине ∆x).

Связь между ∆p и ∆x, проиллюстрированная на рис. 6.7, носит универсальный характер. Волновой пакет, охватывающий большой диапазон импульсов (с большой неопределённостью импульса), будет иметь небольшой разброс по положению (малую неопределённость координаты). Эта взаимосвязь порождается интерференцией. Волновой пакет, составленный из широкого набора собственных значений импульса, обладает широким спектром длин волн, поскольку каждому собственному значению импульса соответствует волна амплитуды вероятности длиной λ=h/p.

Рис. 6.7.Распределение вероятности импульса (p) и распределение вероятности координаты (x) для двух волновых пакетов. В верхней части имеет место широкий разброс p (большое значениеp), который порождает малый разброс по x (малое значениеx). В нижней части разброс по p мал (p мало́), что приводит к увеличению разброса по x (x велико)


Все волны амплитуды вероятности в пакете могут конструктивно интерферировать в некоторой точке пространства. Однако, как показано на рис. 6.2, с удалением от этой центральной точки конструктивной интерференции нарастает деструктивная интерференция. В любой точке, далёкой от этого центра, одни волны будут положительными, а другие — отрицательными (см. рис. 6.2). Когда разброс длин волн велик, большая разница в длинах волн приводит к тому, что деструктивная интерференция начинается очень близко от центральной точки максимальной конструктивной интерференции, и пакет оказывается узким (большое значение ∆p, малое — ∆x). Когда разброс по длинам волн мал, то есть длины волн различаются несущественно, надо значительно удалиться от центральной точки идеальной конструктивной интерференции, чтобы добраться до места, где равное число волн имеет положительные и отрицательные значения. В этом случае значение ∆p мало́, а ∆x — велико.

Ввиду особой важности представления о разбросе по импульсу и о связанном с ним разбросе по координате давайте ещё раз рассмотрим смысл разброса. Всё это связано с экспериментами. В отдельном эксперименте по измерению импульса частицы может быть получено лишь одно значение. У вас есть некоторый инструмент. Он выдаёт одно число. Он не может сообщить, что импульс равен одновременно 10 и 50. Каким же образом мы получаем одно значение, если наш пакет обладает распределением импульсов?

Волновой пакет состоит из суперпозиции собственных значений импульса, то есть импульсных волн амплитуды вероятности, однозначно связанных со значениями импульса. Когда выполняется измерение, сопутствующее ему непренебрежимое возмущение заставляет систему «перепрыгнуть» из состояния суперпозиции в определённое собственное состояние. Измерение даёт значение импульса, которое соответствует данному собственному состоянию. Обратите внимание на то, что измерение меняет систему. Чтобы выполнить ещё одно измерение, нужно начать сначала и подготовить частицу тем же способом, что и в первый раз. При повторении процедуры подготовления волнового пакета он будет состоять из той же суперпозиции собственных значений импульса. Теперь выполним то же самое измерение, что и в первый раз. В общем случае мы получим другое значение импульса, поскольку волновой пакет состоит из множества импульсных волн, с каждой из которых связано своё наблюдаемое значение импульса.

Выполнив огромное число измерений, мы можем получить значение 400 (единицы в данном случае не важны) тысячу раз, значение 390 — восемьсот раз, 410 — восемьсот раз, но 200 и 600 — только по двадцать раз. Если по всем этим числам построить график, получится распределение вероятности, подобное тем, что показаны для импульса в левой части рис. 6.7. Такое распределение вероятности — это результат экспериментального определения состава волнового пакета. Теперь мы знаем, какова величина (вероятность) каждой волны в пакете. Такое же описание применимо и к положению нашего волнового пакета. Каждое измерение положения волновых пакетов, подготовленных идентичным образом, даёт одно положение зарегистрированной частицы. После множества измерений получается распределение по координате, подобное тем, что представлены в правой части рис. 6.7.

Принцип неопределённости Гейзенберга

Чрезвычайно важной является связь между разбросом по импульсу и разбросом по координате, играющая фундаментальную роль в описании частиц в состоянии суперпозиции. Когда разброс по импульсу (∆p) велик, вдоль оси x распределено множество волн (см. рис. 6.1), которые вместе образуют волновой пакет. Эти волны имеют различную длину (см. рис. 6.2). Когда интерферирует множество волн в широком диапазоне длин, область конструктивной интерференции очень быстро заканчивается с удалением от места, где она максимальна (см. рис. 6.3 и 6.4). Это означает, что разброс по координате (∆x) мал. Если же волновой пакет состоит лишь из небольшого спектра импульсных волн (значение ∆p мало́), область конструктивной интерференции тянется в пространстве гораздо дальше от точки максимума пространственного распределения (см. рис. 6.7). Соответственно величина разброса, или неопределённости положения (∆x), оказывается большой. Всё это происходит в силу того, что волновые функции, которые описывают собственные значения импульсов, являются по своей природе волнами амплитуды вероятности. Местоположением волнового пакета можно в каком-то смысле считать область конструктивной интерференции, а в областях существенной деструктивной интерференции вероятность обнаружить частицу очень мала.


Майкл Файер читать все книги автора по порядку

Майкл Файер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Абсолютный минимум. Как квантовая теория объясняет наш мир отзывы

Отзывы читателей о книге Абсолютный минимум. Как квантовая теория объясняет наш мир, автор: Майкл Файер. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.