MyBooks.club
Все категории

Ричард Фейнман - 6. Электродинамика

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Ричард Фейнман - 6. Электродинамика. Жанр: Физика издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
6. Электродинамика
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
130
Читать онлайн
Ричард Фейнман - 6. Электродинамика

Ричард Фейнман - 6. Электродинамика краткое содержание

Ричард Фейнман - 6. Электродинамика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

6. Электродинамика читать онлайн бесплатно

6. Электродинамика - читать книгу онлайн бесплатно, автор Ричард Фейнман

Если путь правильный, то кривая, чуть-чуть отличная от него, не приведет в первом приближении к изменению в вели­чине действия. Все изменения, если это был действительно минимум, возникнут только во втором приближении.

Это легко доказать. Если при каком-то отклонении от кри­вой возникают изменения в первом порядке, то эти изменения в действии пропорциональны отклонению. Они, по всей вероятности, увеличат действие; иначе это не был бы минимум. Но раз изменения пропорциональны отклонению, то перемена знака отклонения уменьшит действие. Выходит, что при отклонении и одну сторону действие возрастает, а при отклонении в обрат­ную сторону — убывает. Единственная возможность того, что­бы это действительно был минимум,— это чтобы в первом при­ближении никаких изменений не происходило и изменения были бы пропорциональны квадрату отклонения от настоящего пути.

Итак, мы пойдем по следующему пути: обозначим через x(t) (с чертой внизу) истинный путь — тот, который мы хотим найти. Возьмем некоторый пробный путь x(t), отличаю­щийся от искомого на неболь­шую величину, которую мы обозначим h(t).

Идея состоит в том, что если мы подсчитаем действие S на пути x(t), то разность между этим S и тем дейст­вием, которое мы вычислили для пути x(t) (для простоты

оно будет обозначено S), или разность между S и S, должна быть в первом приближении по h нулем. Они могут отли­чаться во втором порядке, но в первом разность обязана быть нулем.

И это должно соблюдаться для любой h. Впрочем, не со­всем для любой. Метод требует принимать во внимание только те пути, которые все начинаются и кончаются в одной и той же паре точек, т. е. всякий путь должен начинаться в определен­ной точке в момент t1 и кончаться в другой определенной точке в момент t2. Эти точки и моменты фиксируются. Так что наша функция h(отклонение) должна быть равна нулю на обоих концах: h(t1)=0 и h(t2)=0. При этом условии наша математическая задача становится полностью опре­деленной.

Если бы вы не знали дифференциального исчисления, вы могли бы проделать такую же вещь для отыскания минимума обычной функции f(x). Вы бы задумались над тем, что случится, если взять f(x) и прибавить к х малую величину h, и доказы­вали бы, что поправка к f(x) в первом порядке по h долж­на в минимуме быть равна нулю. Вы бы подставили x+h вместо х и разложили бы f(x+h) с точностью до первой сте­пени h. . ., словом, повторили бы все то, что мы намерены

Итак, идея наша заключается в том, что мы подставляем x(t)=x(t)+- h(t) в формулу для действия

где через V(x) обозначена потенциальная энергия. Производная dx/dt — это, естественно, производная от x(t) плюс производ­ная от h(t), так что для действия я получаю такое выражение:

Теперь это нужно расписать подетальней. Для квадратич­ного слагаемого я получу

Но постойте-ка! Ведь мне не нужно заботиться о порядках выше первого. Я могу убрать все слагаемые, в которых есть h2 и высшие степени, и ссыпать их в ящик под названием «второй и высшие порядки». Из этого выражения туда попадет только одна вторая степень, но из чего-то другого могут войти и выс­шие. Итак, часть, связанная с кинетической энергией, такова:

Дальше нам нужен потенциал V в точках x+h. Я считаю т) малой и могу разложить V(x) в ряд Тэйлора. Приближенно это будет V(x); в следующем приближении (из-за того, что здесь стоят обычные производные) поправка равна h, умноженной на скорость изменения V по отношению к x; и т. д.:

Для экономии места я обозначил через V производную F по х. Слагаемое с h2 и все, стоящие за ним, попадают в категорию «второй и высшие порядки». И о них больше нечего беспо­коиться. Объединим все, что осталось:

Если мы теперь внимательно взглянем на это, то увидим, что два первых написанных здесь члена отвечают тому действию S, которое я написал бы для искомого истинного пути х. Я хочу сосредоточить ваше внимание на изменении S, т. е. на разности между S и тем S, которое получилось бы для истинного пути. Эту разность мы будем записывать как dS и назовем ее вариа­цией S. Отбрасывая «второй и высшие порядки», получаем для dS

Теперь задача выглядит так. Вот передо мной некоторый интеграл. Я не знаю еще, каково это х, но я твердо знаю, что, какую h я ни возьму, этот интеграл должен быть равен нулю. «Ну что ж,— подумаете вы,— единственная возможность для этого — это чтобы множитель при h был равен нулю». Но как быть с первым слагаемым, где есть dh/dt? Вы скажете: «Если h обращается в ничто, то и ее производная такое же ничто; зна­чит, коэффициент при dh/dt должен тоже быть нулем». Ну это не совсем верно. Это не совсем верно потому, что между откло­нением h и его производной имеется связь; они не полностью независимы, потому что h (t) должно быть нулем и при ttи при t2.

При решении всех задач вариационного исчисления всегда пользуются одним и тем же общим принципом. Вы чуть сдви­гаете то, что хотите варьировать (подобно тому, как это сдела­ли мы, добавляя h), бросаете взгляд на члены первого порядка, затем расставляете все так, чтобы получился интеграл в таком виде: «сдвиг (h), умноженный на что получится», но чтобы в нем не было никаких производных от h(никаких dh/dt). Не­пременно нужно так все преобразовать, чтобы осталось «нечто», умноженное на h. Сейчас вы поймете, отчего это так важно. (Существуют формулы, которые подскажут вам, как в некоторых случаях можно это проделать без каких-либо выкладок; но они не так уж общи, чтобы стоило заучивать их; лучше всего проделывать выкладки так, как это делаем мы.)

Как же я могу переделать член dh/dt, чтобы в нем появилось h? Я могу добиться этого, интегрируя по частям. Оказывается, что в вариационном исчислении весь фокус в том и состоит, чтобы расписать вариацию S и затем проинтегрировать по час­тям так, чтобы производные от h исчезли. Во всех задачах, в которых появляются производные, проделывается такой же фокус.

Припомните общий принцип интегрирования по частям. Если у вас есть произвольная функция f, умноженная на dh/dt и проинтегрированная по t, то вы расписываете производную от hf:

В интересующем вас интеграле стоит как раз последнее слага­емое, так что

В нашей формуле для dS за функцию f принимается произ­ведение т на dx/dt; поэтому я получаю для dS выражение

В первый член должны быть подставлены пределы интегриро­вания t1и t2. Тогда я получу под интегралом член от интегри­рования по частям и последний член, оставшийся при преоб­разовании неизменным.

А теперь происходит то, что бывает всегда,— проинтегри­рованная часть исчезает. (А если не исчезает, то нужно переформулировать принцип, добавив условия, обеспечивающие такое исчезновение!) Мы уже говорили, что h на концах пути должна быть равна нулю. Ведь в чем состоит наш принцип? В том, что действие минимально при условии, что варьируемая кривая начинается и кончается в избранных точках. Это зна­чит, что h(t1)=0 и h(t2)=0. Поэтому проинтегрированный член получается равным нулю. Мы собираем воедино остальные члены и пишем

Вариация S теперь приобрела такой вид, какой мы хотели ей придать: что-то стоит в скобках (обозначим его F), и все это умножено на h(t)и проинтегрировано от t1до t2.

У нас вышло, что интеграл от какого-то выражения, умно­женного на h(t), всегда равен нулю:

Стоит какая-то функция от t; умножаю ее на h(t) и интегрирую ее от начала до конца. И какова бы ни была h, я получаю нуль. Это означает, что функция F(t)равна нулю. В общем-то это очевидно, но я на всякий случай покажу вам один из способов доказательства.

Пусть в качестве h (t) я выберу нечто, что равно нулю всюду, при всех t, кроме одного, заранее выбранного значения t. Оно


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


6. Электродинамика отзывы

Отзывы читателей о книге 6. Электродинамика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.