Это замечание в особенности относится к тем страницам, где обсуждается вопрос: конечна или бесконечна скорость распространения тяготения? Анализ подобной проблемы (как и анализ основных понятий механики) — очень разумная тренировка для того, чтобы спокойно принять в дальнейшем идеи теории относительности.
Потому что, — позвольте еще раз напомнить, — пожалуй главная преграда при знакомстве с теорией Эйнштейна — это бессознательная, но глубокая убежденность, что основные понятия классической механики безусловны и как бы «даны свыше».
Легкая реклама. Автор убеждает читателя в том, что все дальнейшее полезно прочесть для лучшего понимания теории относительности.
И напротив, если понять, что физика основана на опыте и априорных понятий не существует, и ясно представлять те гипотезы, на которых основана классическая физика, то теория Эйнштейна не должна казаться менее естественной или более сложной, чем классическая физика.
Все же самое главное оправдание, пожалуй, в том, что с поразительным явлением тяготения связаны удивительные по своей красоте физические теории. Может быть, во всей физике не найдется результатов, которые можно было бы поставить рядом с теориями Ньютона и Эйнштейна.
И наконец, трудно отыскать в истории науки лучший пример, когда работа ученого, казалось бы, над совершенно безнадежной проблемой, работа, невероятная по своей настойчивости, не приводившая ни к чему в течение многих лет, увенчалась бы таким блестящим успехом.
Словом, трудно найти лучший пример торжества «высшей» справедливости в науке…
В 1666 году Ньютон уже владел всеми идеями своей теории. Как ни странно, но, по-видимому, легенда о яблоке истинна.
Ньютон сам рассказывал, что впервые четкая мысль о наличии единой силы, заставляющей все без исключения тела притягиваться друг к другу, появилась у него, когда он наблюдал падение яблока.
Как бы то ни было, сама идея поразительна.
Ньютону известны совершенно, казалось бы, разнородные и, более того, противоречащие друг другу факты.
Он знает, во-первых, законы движения планет, эмпирически найденные Кеплером. Двадцать пять лет потратил Кеплер, чтобы в бесчисленных данных о наблюдаемых положениях планет отыскать скрытые закономерности. После невероятно трудоемкой работы он их находит, но объяснить эти законы не мог, хотя и высказывал мысль о существовании силы тяготения.
С другой стороны, известно, что все тела на Земле стремятся упасть на ее поверхность.
Но если сила, с которой Земля притягивает данное тело, как будто постоянна и, насколько может судить Ньютон, не зависит от расстояния этого тела до центра Земли (во времена Ньютона опытная техника не позволяла заметить изменения веса тела при подъеме его над уровнем океана на 2–3 километра), то законы движения небесных тел таковы, что та гипотетическая сила, которая, по его мнению, их связывает, должна изменяться с расстоянием.
Набросок основных представлений теории тяготения. Автор пытался главным образом пояснить, какие исключительные трудности преодолел Ньютон. Однако попутно несколько увлекся «психологическими исследованиями».
Далее, совершенно неясно следующее. Если есть некая единая сила тяготения, почему же не притягиваются друг к другу предметы на Земле?
Как видите, экспериментальные данные очень запутаны.
Правда, надо признать, что сама идея о наличии какой-то единой силы притяжения витает в воздухе. В этом отношении у Ньютона есть предшественники. Но ни один из сторонников идеи тяготения не в состоянии ни количественно объяснить законы движения планет, ни опровергнуть возражения противников.
Роберт Гук — один из самых ярких и своеобразных ученых в истории физики, — казалось бы, уже открыл закон тяготения. В сочинении «Работа о годичном движении Земли» (1674 год) он пишет:
«Я разовью теорию, которая во всех отношениях согласуется с общепризнанными правилами механики. Теория эта основывается на трех допущениях: во-первых, все без исключения небесные тела обладают направленным к их центру притяжением или тяжестью, благодаря которой они притягивают не только свои собственные части, но также и все находящиеся в сфере их действия небесные тела. Согласно второму допущению, все тела, двигающиеся равномерно и прямолинейно, будут двигаться по прямой линии до тех пор, пока они не будут отклонены какой-нибудь силой и не станут описывать траектории по кругу, эллипсу или какой-нибудь другой, менее простой кривой.
Автор с удовольствием отмечает, что на этот раз претензии по поводу литературного стиля следует адресовать Роберту Гуку.
Согласно третьему допущению, силы притяжения действуют тем больше, чем ближе к ним находятся тела, на которые они действуют.
Я не мог еще установить с помощью опыта, каковы различные степени притяжения. Но если развивать эту теорию дальше, то астрономы сумеют установить определенный закон, согласно которому движутся все небесные тела».
После этого Гук, однако, замечает, что он сам очень-очень занят другими задачами и было бы весьма хорошо, если бы кто-нибудь развил его идеи.
Конечно, даже детально изучив все архивные материалы, вряд ли в данном случае возможно утверждать что-либо совершенно определенно, и тем не менее можно поручиться, что Гук, лукавил.
Слишком хорошо понимал он неповторимую важность проблемы, которой сам занимался много лет, и от решения отступился, конечно, не из-за того, что был исключительно занят, а просто потому, что не мог решить задачи. От качественных рассуждений Гука до закона Ньютона — колоссальное расстояние. И можно, пожалуй, понять шумное негодование Ньютона, когда Гук выразил, правда, очень скромно, претензии на участие в открытии закона всемирного тяготения. О приоритетных спорах между Ньютоном и Гуком, как и о всех прочих подобных распрях Ньютона (а у великого Ньютона их было немало!), так подробно, хорошо и, главное, серьезно рассказано в книге С. И. Вавилова, что ничего нового не прибавишь.
Вообще надо заметить, к подобным историям обычно всегда проявляется резко повышенный интерес, а ученые всех времен и народов, к сожалению, нередко снабжали публику обильным материалом для исследований по этому поводу. Однако в тяжбе Гук — Ньютон имеется очень интересный психологический момент.
Все биографы Ньютона сходятся на том, что на склоне лет сэр Исаак имел весьма неуживчивый характер. Властный, самолюбивый и обидчивый, он ко всему еще как будто не очень любил признавать чужие заслуги.
Все это, очевидно, справедливо. И тем не менее представляется, что такое поведение обусловлено не тщеславием. В своей работе, даже если сбросить со счетов его гениальность, Ньютон всегда был ученым в самом полном смысле слова.
В первую очередь это проявлялось в его исключительной требовательности к результатам своих работ. И естественно, эту требовательность он распространял на других.
Если вспомнить, что уже в 1665 году Ньютон владел, по его словам, всеми идеями теории тяготения и не обмолвился об этом ни словом в печати, видимо считая, что это слишком сырой материал, который истинный ученый должен скрывать от публики, можно понять его реакцию на претензию Гука.
С другой стороны, вполне понятно и то, что Гуку была обидна столь низкая оценка его идей.
Действительно, высказать саму идею наличия тяготения, более того — предугадать, что сила тяготения убывает обратно пропорционально квадрату расстояния (а Гук добрался в конце концов и до этого), — с точки зрения всех, кроме Ньютона, вполне достаточно, чтобы обеспечить славу и признание.
Но Ньютон все мерил своими масштабами и потому имел право вполне искренне считать, что все эти соображения совершенно очевидны, а помимо того, настолько туманны, что не заслуживают даже публикации. Конечно, с его стороны было весьма наивно подходить к другим ученым со своей меркой, но это уже другой вопрос…
И при всех недостатках Ньютона следует в первую очередь помнить, что человек, который десятки лет не печатал такие результаты, как открытие анализа бесконечно малых или соображения о наличии единой силы тяготения, вряд ли особенно заботился о бессмертии.
Существует эффектный апокриф, что будто даже аналитическая формулировка закона тяготения была ясна Ньютону в 1866 году. Но попытка объяснить при помощи закона тяготения движение Луны оказалась неудачной, так как Ньютон имел ошибочные экспериментальные данные о размерах Земли, и в результате значение ускорения на поверхности Земли, которое получилось из вычисления лунного движения, отличалось от того, которое находилось опытным путем. Лишь в 1682 году ему стали известны новые данные о длине меридиана.
С. И. Вавилов, правда, серьезно возражает против истинности этой истории.
Ньютон так взволновался, что не мог сам провести новые очень простые вычисления, и это проделал за него некий, оставшийся неведомым миру, его друг. Так был окончательно создан закон тяготения.