MyBooks.club
Все категории

Иосиф Шкловский - Звезды: их рождение, жизнь и смерть

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Иосиф Шкловский - Звезды: их рождение, жизнь и смерть. Жанр: Физика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Звезды: их рождение, жизнь и смерть
Издательство:
-
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
193
Читать онлайн
Иосиф Шкловский - Звезды: их рождение, жизнь и смерть

Иосиф Шкловский - Звезды: их рождение, жизнь и смерть краткое содержание

Иосиф Шкловский - Звезды: их рождение, жизнь и смерть - описание и краткое содержание, автор Иосиф Шкловский, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Книга посвящена центральной проблеме астрономии — физике звезд. Заключительный этап звездной эволюции представляет особенно большой интерес, так как он имеет прямое отношение к таким интереснейшим объектам современной астрономии, как пульсары, рентгеновские звезды и черные дыры. Проблемы, связанные с этими объектами, пока далеки от решения. Поэтому автор стремился осветить фактическое состояние вопроса, давая лишь общее представление о существующих: теориях и гипотезах. В книге рассматривается также проблема образования звезд. Книга рассчитана на широкий круг лиц со средним образованием. Специальный интерес она представляет для студентов, лекторов, преподавателей, специалистов в области смежных наук.

Звезды: их рождение, жизнь и смерть читать онлайн бесплатно

Звезды: их рождение, жизнь и смерть - читать книгу онлайн бесплатно, автор Иосиф Шкловский

Глава 5 Эволюция протозвезд и протозвездных оболочек

В § 3 мы довольно подробно рассматривали вопрос о конденсации в протозвезды плотных холодных молекулярных облаков, на которые из-за гравитационной неустойчивости распадается газово-пылевой комплекс межзвездной среды. Здесь важно еще раз подчеркнуть, что этот процесс является закономерным, т. е. неизбежным. В самом деле, тепловая неустойчивость межзвездной среды, о которой шла речь в § 2, неизбежно ведет к ее фрагментации, т. е. к разделению на отдельные, сравнительно плотные облака и межоблачную среду. Однако собственная сила тяжести не может сжать облака — для этого они недостаточно плотны и велики. Но тут «вступает в игру» либо ударная волна, сжимающая межзвездную среду в спиральном рукаве (см. § 2), либо межзвездное магнитное поле и характерная для него неустойчивость Рэлея — Тэйлора. В системе силовых линий этого поля неизбежно образуются довольно глубокие «ямы», куда «стекаются» облака межзвездной среды (см. § 3). Это приводит к образованию огромных газово-пылевых комплексов. В таких комплексах образуется слой холодного газа, так как ионизующее межзвездный углерод ультрафиолетовое излучение звезд сильно поглощается находящейся в плотном комплексе космической пылью, а нейтральные атомы углерода сильно охлаждают межзвездный газ и «термостатируют» его при очень низкой температуре — порядка 5—10 кельвинов. Так как в холодном слое давление газа равно внешнему давлению окружающего более нагретого газа, то плотность в этом слое значительно выше и достигает нескольких тысяч атомов Н и молекул Н2 на кубический сантиметр. Под влиянием собственной гравитации холодный слой, после того как он достигнет толщины около одного парсека, начнет «фрагментировать» на отдельные, еще более плотные сгустки, которые под воздействием собственной гравитации будут продолжать сжиматься. Таким вполне естественным образом в межзвездной среде возникают ассоциации протозвезд. Каждая такая протозвезда эволюционирует со скоростью, зависящей от ее массы.

В § 3 мы уже рассматривали самую раннюю фазу эволюции протозвезды — фазу «свободного падения». Эта фаза кончается после того, как благодаря возросшей плотности протозвезда (которая до этого сжималась при более или менее постоянной температуре) станет непрозрачной к собственному инфракрасному излучению. После этого температура ее центральных областей начнет быстро расти. Таким образом, возникает большая разность температур между наружными и внутренними слоями. По этой причине освобождающаяся при сжатии гравитационная энергия должна каким-то образом «транспортироваться» наружу.

Дальнейшая эволюция протозвезды была теоретически рассчитана японским астрофизиком Хаяши, который первым обратил внимание на то, что транспорт энергии в сжимающейся протозвезде должен осуществляться путем конвекции (а не лучеиспусканием, как полагали астрономы до 1961 г., когда были опубликованы исследования Хаяши). Как будет рассказано в § 7, конвекция развивается тогда, когда другие возможности переноса вырабатываемой в недрах звезд энергии ограничены. В самых наружных, «фотосферных» слоях протозвезды механическая энергия бурных конвективных движений, которыми охвачен весь ее объем, должна трансформироваться в энергию излучения, уходящую в мировое пространство. В миниатюрном масштабе такая картина наблюдается в наружных слоях солнечной атмосферы — так называемой «хромосфере», сравнительно высокая температура которой поддерживается механической энергией волн от конвективных потоков, идущих из подфотосферных слоев Солнца. Но у нашего светила конвекцией охвачены только наружные слои. Гораздо более близкими к условиям в протозвезде являются условия в красных гигантах, большая часть объема которых до самой поверхности охвачена бурной конвекцией (см. рис. 11.3).

Температура, при которой энергия конвективных потоков переходит в энергию излучения, определяется многочисленными причинами, например, химическим составом и пр. Чисто эмпирически можно принять, что в поверхностных слоях протозвезды баланс между притоком механической энергии конвекции и излучением устанавливает температуру, близкую к температуре фотосфер красных гигантов, т. е. 3500 К. Более точные расчеты дают для температуры наружных слоев протозвезд несколько меньшее значение, 2500 К. Любопытно, что эти же расчеты приводят к зависимости температуры поверхности протозвезды от ее массы M и светимости L в виде

(5.1)

т. е. эта температура практически совсем не зависит от светимости протозвезды и очень слабо — от ее массы. Итак, температура на поверхности охваченной конвекцией протозвезды на протяжении всей «стадии Хаяши» ее эволюции остается почти постоянной. Так как при этом ее радиус все время уменьшается (ибо она под влиянием собственной гравитации продолжает сжиматься), светимость протозвезды на этой стадии будет непрерывно уменьшаться. Максимальная светимость будет иметь место в течение сравнительно короткого времени, когда во всем объеме протозвезды установится конвекция. Для грубой оценки величины этой максимальной светимости («вспышки») примем для радиуса протозвезды при установлении в ней конвекции формулу (3.8), полученную в § 3. Это означает, в частности, что мы заранее предполагаем, что конвекция в протозвезде наступает сравнительно быстро, т. е. за время установления конвекции протозвезда «не успеет» заметно сжаться. Тогда светимость протозвезды во время «вспышки» будет описываться простой формулой:

(5.2)

Длительность вспышки можно оценить, разделив величину освободившейся при сжатии протозвезды гравитационной энергии GM/R1 на L. Она оказывается порядка нескольких лет, т, е. действительно небольшой.

В § 3 было показано, что в конце «стадии свободного падения» у сжимающейся протозвезды также должна быть яркая сравнительно кратковременная вспышка инфракрасного излучения, когда светимость в тысячи раз превосходит болометрическую светимость Солнца. Вторая вспышка, о которой только что шла речь, должна произойти довольно скоро после первой. Обе вспышки будут сильно отличаться по спектральному составу своего излучения. Во время первой вспышки излучение должно быть сосредоточено в длинноволновой ( 20—30 мкм) инфракрасной части спектра, в то время как основная часть излучения во время второй вспышки падает на ближнюю инфракрасную часть спектра ( 1—2 мкм). При современном состоянии теории и достигнутом сейчас уровне наблюдательной астрономии нельзя также исключить возможность того, что обе вспышки у протозвезд не разделены во времени, а практически сливаются.

После вспышки, сопутствующей окончанию установления конвекции во всем объеме протозвезды, последняя, как уже говорилось, продолжает сжиматься, причем температура ее поверхности поддерживается на почти постоянном уровне (см. выше). Поэтому светимость протозвезды будет убывать обратно пропорционально квадрату ее радиуса. В то же время температура ее недр непрерывно повышается. И вот наступает момент, когда температура там поднимается до нескольких миллионов градусов и «включаются» первые термоядерные реакции на легких элементах (литий, бериллий, бор) с низким «кулоновским барьером» (см. § 8). Протозвезда при этом будет продолжать сжиматься, так как «продукция» термоядерной энергии все еще недостаточна для того, чтобы разогреть ее недра до такой температуры, при которой давление газа уравновесит силу гравитации. Только после того как продолжающийся рост температуры в недрах протозвезды сделает возможным протон-протонную или углеродно-азотную реакцию (см. § 8), давление газа наконец ее «застабилизирует». Протозвезда станет звездой и, в зависимости от своей массы, займет совершенно определенное место на диаграмме Герцшпрунга — Рессела. Теория строения образующихся таким образом равновесных звезд будет рассматриваться во второй части этой книги.

Мы рассмотрели сейчас процесс эволюции протозвезд в звезды. Само собою разумеется, что наше рассмотрение не является строгим. Оно, по необходимости, носит «полукачественный» характер. Строгое решение проблемы образования звезд из межзвездной среды сейчас вряд ли вообще возможно. Можно только строить отдельные куски теории, постоянно контролируя ее наблюдениями.

 


Рис. 5.1: Теоретическая зависимость радиуса протозвезды от времени.  

На рис. 5.1 схематически представлена зависимость радиуса протозвезды, первоначальная масса которой была равна массе Солнца, от времени. Для масштаба горизонтальные прерывистые линии соответствуют радиусам орбит планет Солнечной системы. Мы видим, что в начале «стадии свободного падения» сжимающейся под воздействием собственной гравитации протозвезды, еще недавно бывшей плотным, холодным «молекулярным» облаком, ее радиус близок к радиусу орбиты Плутона. При этом средняя концентрация частиц (преимущественно молекул водорода) была 1012 см-3. Стадия свободного падения (начатая от такой плотности) имеет длительность немногим больше 10 лет (см. формулу (3.7)). За это короткое время протозвезда сжимается до размеров орбиты Меркурия, т. е. примерно в сто раз. Конечно, этому этапу предшествовал существенно более длительный этап сжатия облака с первоначальной плотностью 105—106 см-3 до размеров орбиты Плутона. Далее, сжатие протозвезды резко замедляется, так как она становится непрозрачной к собственному излучению. Наступает «стадия Хаяши» в жизни охваченной конвекцией протозвезды. В самом начале этой стадии должна быть «вспышка» (см. выше). Через несколько десятков миллионов лет сжатие протозвезды почти прекращается и она «садится» на главную последовательность.


Иосиф Шкловский читать все книги автора по порядку

Иосиф Шкловский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Звезды: их рождение, жизнь и смерть отзывы

Отзывы читателей о книге Звезды: их рождение, жизнь и смерть, автор: Иосиф Шкловский. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.