Ломоносов был очень приметливым человеком. Но основные его воспоминания о полярных сияниях основывались на детских и отроческих впечатлениях, пока он «жил до возраста в таких местах, где северные сияния часто случаются». И теперь, объявляя сходство их с электрическими разрядами, он считал, что «електрическая сила, рождающая северное сияние», обязана своим существованием тому же трению, только не ладоней о стекло, как в лаборатории, а воздушных потоков друг о друга. Для объяснения полярных сияний это было неверно, но какие далеко идущие аналогии можно вывести из этого предположения, рассматривая, в частности, современный механизм образования грозы.
«Нет ничего практичнее хорошей теории», — говорим мы сегодня, в конце XX столетия. Двести лет тому назад теория с практикой были связаны не столь тесно. В науке об электричестве еще не были открыты даже основополагающие законы, не существовали те основные понятия, которыми мы пользуемся теперь. Хорошая теория электричества была крайне нужна, чтобы от гипотез о механизме электрических явлений перейти наконец к прогрессивной ньютоновской программе — к нахождению механической, силы, измеряющей взаимодействие между наэлектризованными телами.
Потому и возникло предложение Петербургской Академии — «сыскать подлинную електрической силы причину и составить точную ея теорию».
В ту пору, как писал француз Лемонье в статье «Электричество», помещенной в знаменитой «Энциклопедии», издававшейся Д. Дидро, «мнения физиков относительно причины электричества расходятся: все они, впрочем, согласны в том, что существует электрическая материя, которая более или менее собирается вокруг наэлектризованных тел и которая вызывает своими движениями наблюдаемые нами электрические явления, но каждый из них по-разному объясняет причины и направления этих различных движений».
Во Франция теорию Франклина о существовании электрической жидкости, «электрической субстанции», обходили молчанием. Не одобряли ее и в России. Ломоносов и Рихман были противниками ныотонианских сил, предпочитая взгляды Декарта о существовании вихрей во всемирном эфире. По этой причине не соглашались они и с Франклшювой теорией.
К 1756 году, когда окончился срок конкурса, в Академию поступило довольно много работ. Лучшей была признана присланная из Берлина и подписанная именем Иоганна Эйлера, сына великого математика. Сам Леонард Эйлер права участвовать в конкурсе не имел, поскольку являлся членом Собрания Петербургской Академии. Однако, после того как результаты конкурса были объявлены и работа получила премию, Эйлер признался в обмане — ученые записки принадлежали ему. Свои рассуждения Эйлер строил на предположении, что сверхтонкая материя, создающая электрические силы, есть не что иное, как светоносный эфир. И все известные исследователям электрические явления относил за счет «нарушений равновесия в эфире», сгущения его или разряжения вблизи электризуемых тел. Таким образом, он обходился без введения «специальной электрической материи» Франклина.
Несмотря на то что теория Эйлера исходила из картезианских воззрений, отрицавших «электрические материи», и основывалась на явлениях в эфире, Ломоносов, по-видимому, не был удовлетворен ею полностью. В том же 1756 году он написал диссертацию «Теория электричества, разработанная математическим способом», которая осталась неопубликованной., В ней Михаил Васильевич писал: «Электрические явления — притяжение, отталкивание, свет и огонь — состоят в движении. Движение не может быть возбуждено без другого движущегося тела». Электризация, по гипотезе Ломоносова, обусловливалась вращательным движением частиц внутри вещества и в окружающем пространстве.
Обе теории были принципиально новыми, потому что сводили причину электрических явлений не к свойствам мифической жидкости, а к специфическим формам движения эфира, признанного реально существующим наукой того периода. Теории Эйлера и Ломоносова носили чисто электростатический характер. Отрицая движение электрической жидкости — электрического тока, они приводили к неправильному представлению о грозозащите и об устройстве громоотводов.
По мнению Ломоносова, надежным громоотводом могли служить изолированные «электрические стрелы», которые, должны были отводить в землю не электрический заряд, а «електрическую силу». Потому и устанавливать их он предлагал не на крышах зданий, а на пустырях, подальше от строений, «дабы ударяющая молния больше на них, нежели на головах человеческих и на храминах (т.е. на зданиях — А.Т.) силы свои изнуряла».
В принципе незаземленный громоотвод тоже способствовал разряду и отводил молнию в землю через окружающий воздух. Но при заземлении этот процесс, конечно, происходил несравненно спокойнее.
Второй надежный способ грозозащиты Михаил Васильевич видел в «потрясении воздуха», в том, чтобы «разбивать громовые тучи колокольным звоном». «Того ради кажется, — говорил он, — что не токмо колокольным звоном, но и чисто пушечной пальбою во время грозы воздух трясти не бесполезно, дабы он великим дрожанием привел в смятение електрическую силу и оную умалил».
Таким образом, более глубокие концепции электричества в принципиальном отношении у Эйлера и Ломоносова на практике приводили к неправильному конструированию громоотводов.
Идеи Франклина в России получили дальнейшее развитие в работе Эпинуса, вышедшей в 1759 году в Санкт-Петербурге. Тридцатитрехлетний профессор астрономии Берлинской Академии наук и астроном Берлинской обсерватории Франц Ульрих Теодор Эпинус всего два года назад переселился в Россию, приняв предложение войти в члены Петербургской Академии.
В первые же годы жизни в Петербурге Эпинус развивает бурную деятельность. Он пишет работу о возвращении комет, о способах «поправления морского компаса и магнитных стрелок», об «умножении силы в натуральных магнитах». И наконец — большое сочинение «Опыт математической теории электричества и магнетизма», изданное отдельной книжкой. Эта работа изобиловала математическими выражениями, все они носили формально-описательный характер и нужны были, по выражению самого автора, лишь для того, «чтобы избежать излишней пространности обычной речи». Никаких расчетов по этим «формулам» делать было нельзя[20]. Однако профессор Эпинус высказал немало замечательных мыслей, характеризующих не только его научную эрудицию, но и подлинный дар научного предвидения. Так, он отмечает, что неизвестный никому вид закона электростатического и магнитостатического воздействия представляется ему похожим по форме на закон тяготения. «Я охотно утверждал бы, — писал он, — что величины изменяются обратно пропорционально квадратам расстояний… В пользу такой зависимости, по-видимому, говорит аналогия с другими явлениями природы».
Пройдет 26 лет, и в 1785 году французский физик и военный инженер Шарль Огюстен Кулон установит основной закон электростатики, подтвердив предвидения Эпинуса. А три года спустя тот же Кулон распространит свой закон и на взаимодействие точечных магнитных полюсов, заложив тем самым основы электро — и магнитостатики.
В уже упоминавшейся выше работе Эпинус использует представление о «сгущении» электрической жидкости, приближаясь тем самым к понятию электрического потенциала[21]. И даже приходит к понятию электроемкости, предвосхитив тем самым английского физика и химика Генри Кавендиша, строго сформулировавшего это понятие 10-12 лет спустя.
В работе Эпинуса есть и другие интересные предвидения, реализованные позже учеными.
Франц Ульрих Теодор Эпинус, физик, член Петербургской Академии наук с 1756 года, родился в 1724 году в городе Ростоке в семье пастора. В том же городе поступил в университет, откуда уходил в Иену, по обычаю буршей, меняющих университеты. Однако, в конце концов, снова вернулся в Росток, где и получил степень доктора медицины.
После окончания учебы Эпинус некоторое время работал приват-доцентом в том же университете, преподавал астрономию и физику. Но вскоре переехал в Берлин, где получил должность профессора астрономии при Академии наук. Одновременно он выполнял обязанности астронома при обсерватории.
В Берлине Эпинус познакомился с молодым, только что окончившим Ростокский университет Иоганном Карлом Вильке.
В то время многие физики были увлечены загадкой удивительных кристаллов, привезенных голландскими купцами в начале столетия с острова Цейлон. Назвали этот камень турмалином, или турмалем. Он бывал разного цвета, и его прозрачные кристаллы ценились наравне с индийскими рубинами и другими драгоценными камня ми. Но физиков привлекало то обстоятельство, что стоило нагреть турмалин на огне, как он тут же начинал притягивать к себе и отталкивать частички золы. Его даже прозвали за это «зольным камнем».