MyBooks.club
Все категории

Ирина Радунская - Кванты и музы

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Ирина Радунская - Кванты и музы. Жанр: Физика издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Кванты и музы
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
135
Читать онлайн
Ирина Радунская - Кванты и музы

Ирина Радунская - Кванты и музы краткое содержание

Ирина Радунская - Кванты и музы - описание и краткое содержание, автор Ирина Радунская, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
О встречах с людьми, которые участвовали или участвуют в творении новых центров кристаллизации открытий.О встречах с идеями, сдвинувшими или готовыми сдвинуть с места застывшую глыбу неразрешённых проблем, развязавшими первый узелок в спутанном клубке противоречий.О встречах со сбывшимися, нашумевшими открытиями и со скромными результатами, накапливающимися день за днём и вызывающими предчувствие грядущих перемен или надежду на взрыв прозрений.Лишь о некоторых открытиях я попытаюсь рассказать в этой книге.

Кванты и музы читать онлайн бесплатно

Кванты и музы - читать книгу онлайн бесплатно, автор Ирина Радунская

…Если подойти к ФИАНу со стороны улицы Вавилова, то рядом с корпусом прохоровской лаборатории увидишь здание-двойник. Это Лаборатория квантовой радиофизики, которой руководил директор института академик Басов.

Здесь тот же «бог» — лазер. И в этой лаборатории учёные, вооружённые лазером, во многих областях науки, техники, промышленности обогнали сегодняшний день.

Лаборатории Басова и Прохорова, несомненно, лидеры в квантовой радиофизике. Но, разумеется, они в нашей стране не единственные — лазерная тематика сегодня так активно внедрилась во все сферы теоретического поиска и практического использования его результатов, что рассказать о всех достижениях лазеров просто невозможно. Поэтому попытаемся отобрать из огромного многообразия лазерных тем те, которые решают кардинальные проблемы будущего, кризисные проблемы.

Главная забота современного человечества — поиски новых источников энергии.

Зажечь лазерным лучом земное солнце — неиссякаемый источник термоядерной энергии — эта мечта овладела учёными, когда лазер был ещё немощен и мало изучен. И когда поиск путей к управлению термоядерной реакцией шёл совсем по другому пути. Уже более четверти века передовые страны тратят большие средства на развитие исследований по магнитному удержанию термоядерной плазмы. Образцом для подражания служит Солнце, практически неисчерпаемый источник энергии. Физики XX века пришли к выводу, что энергия, заставляющая светить Солнце и другие звёзды, возникает в результате превращения водорода в гелий. Взрыв первой водородной бомбы, осуществлённый в 1952 году, подтвердил мощь этой реакции и возможность осуществления её на Земле. Оставалось, казалось бы, немногое: найти средний путь между мгновенным взрывом, происходящим в бомбе, и медленным, но огромным по масштабам и неподвластным человеку процессом, протекающим в недрах звёзд. Нужно было превратить термоядерный синтез в управляемую, контролируемую реакцию и использовать её для мира, а не для войны.

Рассмотрим вместе с учёными эту возможность.

Для того чтобы два ядра тяжёлого водорода дейтерия могли слиться друг с другом, образуя ядро гелия и высвобождая порцию энергии, они должны столкнуться между собой с огромными скоростями. Только при этом могут быть преодолены силы взаимного отталкивания одноимённых зарядов ядер. Силы, защищающие ядро от ему подобных, крепче лат средневековых рыцарей. Чтобы придать ядрам дейтерия нужную скорость, следует на греть их до температуры в несколько десятков миллионов градусов. Но одного этого недостаточно. Чтобы реакция успела развиться в устойчивый процесс, такую температуру нужно поддерживать достаточно долго. Ведь ядра невозможно точно направить одно на другое с тем, чтобы они обязательно столкнулись между собой. Столкновение — дело случая. И чтобы такие случаи реализовались в достаточном количестве, нужно на некоторое время удержать раскалённый газ в ограниченном объёме, несмотря на огромные скорости, заставляющие его рассеиваться в пространстве.

Попробуем на минуту представить себе, что происходит в глубине Солнца или солнцеподобного светила — механизм процесса при температуре в миллионы градусов. В таком пекле атомы не могут «выжить» и сохраниться в целом виде. Огромная температура разрывает их на части, отрывает электроны от ядер. Они движутся независимо и с большими скоростями. Но сила притяжения не даёт им разлететься, в недрах звёзд образуется особое состояние вещества — раскалённая, плотная плазма, удивительное состояние материи, больше всего напоминающее газ, а точнее ту плазму, которая существует внутри трубок газосветных реклам или возникает в лампах-вспышках, применяемых фотографами. Разница лишь в температурах и давлениях. Здесь, в земных условиях, это тысячи градусов и доли или единицы атмосфер. Там — миллионы. Здесь далеко не все атомы разрушены, не все ядра оголены, не все электроны освобождены. Там — все.

Различен и состав вещества. Здесь, в лампах, это инертные газы или их смесь. Там — преимущественно водород. Плазма, бурлящая в недрах звёзд, состоит главным образом из протонов — ядер водорода — с незначительной примесью ядер других лёгких элементов и, конечно, электронов.

Внутри звёзд протекают сложные ядерные реакции, в результате которых четыре протона объединяются между собой, образуя ядро атома гелия — альфа-частицу. При этом выделяется энергия, поддерживающая сияние звёзд.

В каждом таком акте слияния испускается малая порция энергии. Но размеры звёзд огромны, велика и энергия, выделяющаяся в течение миллиардов лет. На Земле невозможно воспроизвести точно условия, существующие в недрах звёзд. Нужно добиться слияния протонов более простым, доступным путём. Чтобы это был не взрыв, а безопасный управляемый процесс.

Получение горячей плазмы в земных условиях — цель и надежда всей будущей энергетики. Казалось бы, всё ясно: надо нагреть плазму и удержать её частицы от разлетания. Но как нагреть и как удержать?

Первый обнадёживающий путь указал академик Тамм: создать и нагреть плазму электрическим разрядом и удержать её силой магнитных полей в особых «магнитных бутылях». По этому пути пошли многие учёные. Исследователи увлекались то одной, то другой конструкцией остроумных и, казалось, надёжных устройств — как правило, это были громоздкие приборы, скованные массивными электромагнитами. Но наградой были лишь неудачи. Из этих «магнитных бутылей» плазма вытекала, словно молоко из дырявых пакетов. Рукотворное солнце не зажигалось… Этот путь дал лишь опыт, понимание трудностей задачи, но не практический результат.

Самый конструктивный способ, основанный на принципе магнитного удержания плазмы, был предложен и разработан учёными под руководством академика Арцимовича. Они придумали магнитную бутылку, лишённую горла. Их магнитная ловушка имеет форму пустого бублика. Бублика с двойными стенками. Первые, видимые, отделяют внутреннюю полость от внешнего воздуха. Там будет создана и нагрета плазма. Вторые — невидимые, образованы магнитными полями. Они отделяют плазму от стенок бублика, чтобы частицы раскалённой плазмы не соприкасались с ними, не охлаждались ими и не нагревали их.

Прибор, вернее, сложная и крупная установка, реали зующая эту идею, получил название токамак. Его основа — тороидальная камера, расположенная внутри тороидального магнитного поля, — позволяет нагревать плазму до гигантских температур и удерживать её некоторое время в этом состоянии. Советские учёные показали, что это один из надёжных путей к цели, получив температуру внутри токамака в 10–15 миллионов градусов. За ними пошли учёные всех промышленно развитых стран. Недавно американские ученые, применив дополнительный нагрев, достигли в своем Токамаке температуры в 60 миллионов градусов.

Это — надёжный путь покорения энергии ядра. Однако пока никто не прошёл его до конца. Никто не добился вожделенной цели — не зажёг рукотворное солнце.

Главная причина в том, что при помощи электрического разряда невозможно осуществить достаточно быстрый нагрев. Когда температура плазмы доходит до десятков миллионов градусов, ни одна, даже самая мощная, ловушка не способна удержать плазму от расширения.

Ещё не были запущены даже первые модели Токамаков, а экономисты уже провели расчёт на эффективность. Они сравнили, сколько энергии на единицу веса топлива выделится при термоядерном способе и расщеплении тяжёлых ядер урана или плутония в обычных атомных энергетических установках. Расчёт показал, что термоядерные электростанции будут выгоднее атомных, выгоднее даже самых выгодных на сегодняшний день. Был сделан и другой подсчёт, так сказать на «чистоту» процесса. И в этом плане термоядерный синтез оказался самым прогрессивным и гигиеничным. Он не даёт тех побочных отходов, которые всё-таки получаются при атомных расщеплениях (имеются в виду радиоактивный цезий, стронций и другие радиоактивные продукты, эти неизбежные спутники деления тяжёлых ядер). При термояде нет и угрозы ЧП: установка не расплавится, не взорвётся. Если процесс выйдет из-под контроля, пойдёт не по программе, то он просто заглохнет, прекратится.

Сама природа — главный пропагандист идеи термояда. Запасы тяжёлого водорода, дейтерия — этого основного термоядерного топлива — неисчерпаемы. Одного лишь дейтерия из морей достаточно для практических нужд на миллионы лет вперёд. А ведь водород содержится в воде повсюду!

Вот почему никакие трудности с магнитными ловушками не могли уже заставить физиков отказаться от намерения найти способ зажечь рукотворную звезду.

И вот — новая идея: изящная, гениально простая и на первый взгляд легко осуществимая!

В вакуумную камеру выстреливается льдинка замороженного водорода (вернее, смеси тяжёлого водорода — дейтерия и сверхтяжёлого водорода — трития). Вспышка лазера встречает льдинку в центре камеры. Мощность лазерного луча столь велика, что льдинка, температура которой первоначально близка к абсолютному нулю, мгновенно превращается в крупинку солнца. Температура её приближается к бушующей в недрах звезды, а плотность всё ещё очень высока. Ведь за мгновение, пока длится вспышка, частицы, уже набрав колоссальную скорость, ещё не успели заметно сместиться в пространстве, а давление лучей лазера вызывает в раскалённой плазме ударную волну, сжимающую плазму в сверхплотный сгусток.


Ирина Радунская читать все книги автора по порядку

Ирина Радунская - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Кванты и музы отзывы

Отзывы читателей о книге Кванты и музы, автор: Ирина Радунская. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.