MyBooks.club
Все категории

Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир. Жанр: Физика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Абсолютный минимум. Как квантовая теория объясняет наш мир
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
9 сентябрь 2019
Количество просмотров:
306
Читать онлайн
Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир

Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир краткое содержание

Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир - описание и краткое содержание, автор Майкл Файер, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Абсолютный минимум. Как квантовая теория объясняет наш мир читать онлайн бесплатно

Абсолютный минимум. Как квантовая теория объясняет наш мир - читать книгу онлайн бесплатно, автор Майкл Файер

Значения энергии квантуются

Теперь мы определим возможные значения энергии, которой может обладать абсолютно малая частица в ящике. Классический мяч на ракетбольной площадке может иметь любую энергию, то есть набор её возможных значений непрерывен. Определить, какой энергией может обладать такая частица, как электрон в крошечном ящике, можно, опираясь на правило для возможных значений длины волны λ=2L/n амплитуды вероятности в этом ящике (см. рис. 8.4). Слово «крошечный» означает здесь, что ящик мал в абсолютном смысле, то есть длина волны сопоставима с его размерами. Нам также понадобятся несколько других физических соотношений, которые уже встречались нам ранее, а именно: соотношение для длины волны де Бройля p=h/λ, где p — импульс, а h — постоянная Планка; формула для импульса p=mV, где m — масса частицы, а V — её скорость; выражение для кинетической энергии частицы

EmV2.


Давайте объединим эти формулы.

Первым делом возведём в квадрат величину p:

p2=m2∙V2.

Если теперь разделить обе части уравнения на 2m, то в правой части получим кинетическую энергию

½mV2,

а в левой части —

p2/2∙m.


Отсюда следует выражение для кинетической энергии:

E=p2/2∙m.

Используя соотношение де Бройля, можно получить выражение: p2=h2/λ2. Подставляя его в выражение для энергии, получаем:

E=h2/2∙m∙λ2.

Наконец, применим наше правило λ=2L/n для возможных значений длины волны. Из него следует: λ2=4L2/n2. Подставив это выражение в формулу для энергии, находим:

E=n2h2/8∙m∙λ2,

где n принимает любые целые значения: 1, 2, 3 и т. д. Целочисленная величина n называется квантовым числом.

Мы получили очень важный результат: значения энергии абсолютно малой частицы в абсолютно малом ящике. Этот результат очень тесно связан с поведением электронов в атомах и молекулах. Как видно из формулы, набор возможных значений энергии не непрерывен, поскольку n может принимать только целочисленные значения; другие величины, входящие в формулу, для конкретной системы являются константами. Мы будем говорить, что энергия квантуется, то есть она может принимать лишь некоторые значения, определяемые физическими свойствами системы и квантовым числом.

Дискретный набор энергетических уровней

Существует дискретный набор энергетических уровней для данных значений массы m и размера ящика L. Поскольку квантовое число n принимает значения 1, 2, 3 и т. д., соответствующие значения энергии будут равны

h2/8∙m∙L2, 4∙h2/8∙m∙L2, 9∙h2/8∙m∙L2, и т. д.

Рис. 8.6.Энергетические уровни частицы в ящике. Здесь n — квантовое число, а E — энергия, которая увеличивается как квадрат квантового числа. Энергия выражена в единицах h2/8m∙L2, так что хорошо видно, как она возрастает. Штриховой линией обозначена нулевая энергия. Самый низкий энергетический уровень не совпадает с линией E=0 в отличие от случая классической частицы в ящике


На рис. 8.6 представлена диаграмма энергетических уровней для первых нескольких значений энергии частицы в ящике. Энергия выражена в единицах h2/8m∙L2. Чтобы получить фактическое значение энергии, нужно просто подставить конкретные значения m и L в формулу для энергетических уровней. На диаграмме видно, что энергия увеличивается как квадрат квантового числа n. Штриховой линией обозначено, где энергия равна нулю. Квантовая частица в ящике на наинизшем энергетическом уровне имеет ненулевую энергию, чем резко отличается от классической частицы в ящике. На классической ракетбольной площадке энергия, которой может обладать мяч, непрерывна. Ударяя по мячу чуть сильнее или чуть слабее, его энергию можно увеличить или уменьшить на любую величину. Однако в квантовом ракетболе возможны лишь отдельные значения энергии, показанные на рис. 8.6. Как отмечалось в начале нашего разговора о квантовой частице в ящике, наименьшая энергия не равна нулю. Если бы квантовая частица в ящике могла иметь нулевую энергию, это нарушало бы принцип неопределённости.

Связь результатов для частицы в ящике с реальными системами

Частица в ящике — это очень простая иллюстрация общего свойства абсолютно малых систем. Энергия таких систем не обязательно непрерывна. Частица в ящике не является физически реализуемой системой, поскольку она одномерна и окружена «идеальными» стенками. Однако атомы и молекулы — реальные системы. Энергетические уровни атомов и молекул исследовались очень подробно, а их квантованные энергетические уровни измерялись экспериментально и рассчитывались теоретически. Подобно тому как энергетические уровни частицы в ящике зависят от свойств системы (массы частицы и длины ящика), энергетические уровни в атомах и молекулах зависят от свойств этих атомов и молекул.

Молекулы поглощают свет определённых цветов

Хотя частица в ящике не является физически реализуемой системой, свойства, обнаруженные в этой задаче, также присущи атомам и молекулам. При фотоэлектрическом эффекте энергия падающих фотонов столь велика, что из куска металла выбиваются электроны (см. главу 4). При достаточно большой энергии фотона его удар по молекуле также может привести к выбросу электрона. Однако в случае более низкой энергии фотонов при падении света на атом или молекулу он может поглощаться без испускания электронов. Внутренняя энергия атома или молекулы при этом возрастает, поскольку к ней добавляется энергия фотона.

Молекулы (и атомы) состоят из заряженных частиц: электронов, заряженных отрицательно, и атомных ядер, несущих положительный заряд. В видимом и ультрафиолетовом диапазонах, то есть при длине волны менее 700 нм, частота света очень велика. Колеблющееся электрическое поле света взаимодействует с заряженными частицами молекул. Электроны очень лёгкие, и поэтому им проще откликнуться на быстрые колебания электрического поля света видимого или ультрафиолетового диапазона. Поглощение видимого излучения и ультрафиолета вызвано увеличением энергии электронов в молекуле.

Вопрос состоит в том, какова длина световых волн, которые будут поглощаться молекулой? Это очень сложный вопрос для любой конкретной молекулы. Чтобы теоретически определить спектр поглощения молекулы, приходится выполнять огромное количество квантовомеханических расчётов. Тем не менее важные аспекты молекулярного поглощения света можно разобрать на основе задачи о частице в ящике. В качестве чрезвычайно упрощённой модели молекулы мы будем рассматривать одиночный электрон в ящике молекулярного размера. В конце мы подставим в формулы числа. Когда на электрон, находящийся в ящике (молекуле), никакой свет не падает, он пребывает в состоянии с наименьшей энергией, так называемом основном состоянии. Для частицы в ящике наименьшей энергии соответствует квантовое число n=1. При n=1

E=h2/8∙m∙L2.

Когда на молекулу попадает свет, фотон может быть поглощён. В этом случае общая энергия света убывает на величину энергии поглощённого фотона. Энергия должна сохраняться, что обеспечивается переходом электрона в более высокое энергетическое состояние, то есть он покидает основное состояние с наименьшим уровнем энергии и переходит на более высокий энергетический уровень. Однако этот более высокий энергетический уровень не может иметь произвольное значение энергии, поскольку энергетические уровни частицы в ящике (и в молекулах) квантуются. Самое низкое энергетическое состояние над основным уровнем соответствует квантовому числу n=2. Это состояние называется первым возбуждённым. Электрон возбуждается при поглощении фотона и переходит из основного состояния в первое возбуждённое. Энергия первого возбуждённого состояния (n=2) равна


Майкл Файер читать все книги автора по порядку

Майкл Файер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Абсолютный минимум. Как квантовая теория объясняет наш мир отзывы

Отзывы читателей о книге Абсолютный минимум. Как квантовая теория объясняет наш мир, автор: Майкл Файер. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.