MyBooks.club
Все категории

Ричард Фейнман - 4. Кинетика. Теплота. Звук

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Ричард Фейнман - 4. Кинетика. Теплота. Звук. Жанр: Физика издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
4. Кинетика. Теплота. Звук
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
130
Читать онлайн
Ричард Фейнман - 4. Кинетика. Теплота. Звук

Ричард Фейнман - 4. Кинетика. Теплота. Звук краткое содержание

Ричард Фейнман - 4. Кинетика. Теплота. Звук - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

4. Кинетика. Теплота. Звук читать онлайн бесплатно

4. Кинетика. Теплота. Звук - читать книгу онлайн бесплатно, автор Ричард Фейнман

Так случилось, что так называемый второй закон термоди­намики был открыт Карно раньше первого закона! Было бы очень интересно привести здесь аргументы Карно, не опира­ющиеся на первый закон. Но придется отказаться от этого, потому что мы изучаем физику, а не историю. С самого начала будем пользоваться первым законом, хотя многое можно было бы сделать и без него.

Сначала сформулируем первый закон, закон сохранения энергии: если нам дана система и мы подводим к ней тепло и производим над ней какую-то работу, то приращение энергии системы равно подведенному теплу и затраченной работе. Мы запишем все это так: к системе подводится тепло Q и над ней производится работа W, тогда энергия системы U возрастает; эту энергию иногда называют внутренней энергией. Связаны эти величины следующим соотношением:

Изменение U=Q+W. (44.1)

Изменение U можно получить, добавляя небольшое количе­ство тепла DQ и небольшую работу DW:

DU=DQ+DW. (44.2)

Это — дифференциальная форма того же закона. Все это мы уже хорошо знаем из предыдущей главы.

§ 2. Второй закон

А что такое второй закон термодинамики? Мы знаем, что если при работе приходится преодолевать трение, то потерян­ная работа равна выделившемуся теплу. Если мы преодолеваем трение в комнате при температуре Т и делаем это достаточно медленно, то температура в комнате изменится ненамного. Мы превращаем работу в тепло при постоянной температуре. Ну, а можно ли поступить наоборот? Сумеем ли мы каким-то спо­собом превратить тепло в работу при постоянной температуре? Второй закон термодинамики утверждает, что это невозможно. Было бы очень хорошо научиться превращать тепло в работу, изменив лишь направление процесса, похожего на трение. Если исходить только из закона сохранения энергии, можно считать, что тепловая энергия, например колебательная энер­гия молекул, способна служить удобным источником полезной энергии. Но Карно утверждал, что при постоянной температуре тепловую энергию нельзя извлечь из ее источника. Иначе говоря, если бы весь мир имел повсюду одинаковую температуру, то оказалось бы невозможным превратить тепловую энергию в работу. Хотя процессы, при которых работа пере­ходит в тепло, могут идти при постоянной температуре, не­возможно обратить их и вернуть работу обратно. Если говорить точно, Карно утверждал, что при постоянной температуре нель­зя извлечь тепло из его источника и превратить в работу, не производя больше никаких изменений в заданной нам системе или в окружающем пространстве.

Последняя фаза очень важна. Предположим, что в запаян­ном контейнере находится сжатый воздух при постоянной температуре; мы позволили ему расшириться. Такое устройство может совершать работу; оно может привести в движение пневматический молоток. При расширении, например, воздух чуть-чуть охлаждается, но если в нашем распоряжении очень большое море, огромный тепловой резервуар, то мы снова сможем нагреть его. Итак, мы взяли из моря (резервуара) тепло и произвели работу при помощи сжатого воздуха. Однако Карно не ошибся. Ведь мы не сумели оставить все в системе без изменения. Чтобы сжать снова воздух, которому мы позволили расшириться, нам понадобится произвести дополнитель­ную работу. Покончив с этим, мы обнаружим, что не только не смогли заставить систему работать при заданной температуре Т, но еще и сами вложили некую работу. Мы должны говорить только о таких случаях, когда полный результат всего про­цесса сводится к изъятию тепла и превращению его в работу, точно так же, как при преодолении трения конечный результат есть превращение работы в тепло. Если процесс сводится к движению по окружности, то систему можно вернуть точно в исходное положение, но конечным результатом этого процесса будет переход в тепло затраченной на преодоление трения работы. А можно ли обратить этот процесс? Повернуть, ска­жем, какую-нибудь ручку, чтобы все повернулось вспять, трение производило полезную работу, а моря остыли? Карно сказал, что этого не может быть. Давайте и мы предположим, что это невозможно.

Если бы это стало вдруг возможным, то это означало бы, что, помимо многих других полезных вещей, мы смогли бы, например, без всяких затрат отнять тепло у холодного тела и отдать его горячему. Между тем каждый знает, что тепло переходит от горячего тела к холодному.

Если мы просто приложим нагретое тело к холодному и боль­ше ничего делать не будем, то, насколько известно, горячее тело никогда не станет горячее, а холодное — холоднее! Но если бы мы смогли произвести работу, отобрав тепло, скажем, у океана или от чего-нибудь еще, не изменив его температуры, то эту работу можно было бы, призвав на помощь трение, снова превратить в тепло, но уже при другой температуре. Например, второе плечо нашей воображаемой машины может тереться обо что-то, что и так уже нагрелось. Полный результат про­цесса в этом случае сводится к охлаждению «холодного» тела, в нашем случае океана, и нагреванию горячих трущихся частей машины. Гипотезу Карно, второй закон термодинамики, иногда формулируют так: тепло не может перетечь само собой от холодного тела к горячему. Но мы только что убедились в эквивалентности этих утверждений. Повторим их снова. Пер­вое: нельзя осуществить процесс, единственным результатом которого является превращение тепла в работу при постоянной температуре. Второе: тепло не может перетечь само собой от холодного тела к горячему. Мы будем чаще пользоваться пер­вой формулировкой.

Анализ работы тепловой машины, проделанный Карно, весьма похож на то, что мы делали в гл. 4 (вып. 1), когда изу­чали подъемные машины и рассуждали о законе сохранения энергии. Более того, приведенные там аргументы подсказаны аргументами Карно о работе тепловых машин. Поэтому неко­торые рассуждения в этой главе покажутся вам уже знакомыми.

Предположим, что «котел» построенной нами тепловой машины поддерживается при температуре Т1. За счет отнятого у котла тепла Q1пар совершил работу W и выделил в «конден­соре» тепло Q2[температура конденсора равна Т2(фиг. 44.3)].

Фиг. 44.3. Схема тепловой машины.

Карно не уточнил, чему равно это тепло, потому что не знал первого закона и не предполагал, что Q2равно Q1потому что не верил этому. Многие считали, что Q1и Q2одинаковы, так предписывала калорическая теория. Но Карно этого не предполагал, в этом одна из тонкостей его аргументов. Если же использовать первый закон, то мы найдем, что выде­ленное тепло Q2равно теплу Q1за вычетом совершенной работы:

Q2=Q1-W. (44.3)

(Если бы наш процесс был циклическим и сконденсированная вода поступала бы снова в котел, то после каждого цикла при заданном количестве участвующей в цикле воды поглощалось бы тепло Q1и производилась бы работа W.)

А теперь построим другую машину и посмотрим, не сможем ли мы совершить большую работу при том же количестве тепла, выделяемого при температуре T1. В конденсоре будет поддерживаться та же температура Т2. Мы используем то же тепло Q1 из котла и попытаемся совершать большую работу, чем та, которая была произведена старой паровой машиной. Для этого, быть может, придется использовать другую жидкость, скажем спирт.

§ 3. Обратимые машины

Давайте разберемся в наших машинах получше. Одно из свойств всех машин нам уже известно. Если в машине есть трение, то неизбежны потери энергии. Наилучшей машиной была бы машина вообще без трения. Предположим, что мы имеем дело с теми же идеальными машинами, что и при изучении закона сохранения энергии, т. е. машинами, которым совсем не надо преодолевать трения.

А теперь обсудим аналог движения без трения — «лишенный трения» перенос тепла. Если мы приложим горячее тело к телу, обладающему более низкой температурой, то возникнет теп­ловой поток. Тепло течет от горячего тела к холодному, и, чтобы довернуть поток вспять, нужно слегка изменить темпе­ратуру какого-нибудь одного тела. Но машина, лишенная трения, будет под действием сколь угодно малой силы послушно двигаться туда, куда ей приказывают, а когда сила будет дей­ствовать в другую сторону, охотно последует за ней. Аналогом машины без трения может служить устройство, в котором бес­конечно малые изменения температуры могут повернуть тепло­вой поток вспять. Если разность температур конечна, то это невозможно. Но если тепло течет между двумя телами прак­тически при одинаковой температуре и достаточно бесконечно малого изменения температуры, чтобы поток повернул в любом направлении, то поток считается обратимым (фиг. 44.4).


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


4. Кинетика. Теплота. Звук отзывы

Отзывы читателей о книге 4. Кинетика. Теплота. Звук, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.