Рис. 8.1. Фотонные орбиты вокруг черной дыры
На рис. 8.1 видно, что на расстояниях, близких к rg фотонные орбиты как бы перепутываются. Это приведет к странным ощущениям наблюдателя, по мере его приближения к объекту. Издалека он будет воспринимать перед собой объект как черное пятно, вокруг пятна – обычные созвездия, которые и были бы без объекта. Позади себя он увидит небо с обычным рисунком созвездий. Чем ближе к объекту, тем больше черное пятно. А на расстояниях близких к круговой фотонной орбите картина фантастически изменится. Поскольку он будет встречать лучи, которые «развернулись», то вокруг черного пятна вместе с прежними звездами он увидит и звезды, которые позади него. Внутри круговой фотонной орбиты позади себя он увидит кроме обычных звезд также и звезды, которые реально перед ним. Действительно, в этой области лучи закручиваются, разворачиваются.
Какое выражение примет эффект смещения перигелиев вблизи rg? Изучение траекторий обычных тел с ненулевой массой покоя, пролетающих на расстояниях сравнимых с rg, дает ответы, похожие на описание световых траекторий. Существуют некоторые предельные параметры (зависящие от скорости), дальнейшее изменение которых определяет неминуемый захват тела, который происходит в общем случае по спирали.
Следующие эффекты – это замедление времени и гравитационное красное смещение. Явная форма решения, которое представляет геометрию Шварцшильда, позволяет легко рассказать об этом. Во всем пространстве и на подступах к сфере радиуса rg распределим неподвижных наблюдателей. Они могут быть зафиксированы, например, с помощью ракетных двигателей, препятствующих падению к центру. У всех наблюдателей одинаковые часы, которые у каждого из них идут одинаково. Но каждая точка имеет собственное (истинное) течение времени, и в сравнении друг с другом это время течет по-разному.
Истинное время наблюдателя на бесконечности (где, по сути, пространство-время плоское) совпадает с координатным временем t. Для геометрии Шварцшильда истинное время в каждой конкретной точке представляется выражением τ = t(g00)1/2 = t(1 – rg/r)1/2. Эта формула показывает, каким будет наблюдаться ход часов, помещенных в точке с радиальной координатой r удаленным наблюдателем (наблюдателем на бесконечности). То есть с его точки зрения часы, которые ближе к центру (с меньшими значениями r) идут медленнее тех, которые дальше от центра. Это, конечно, относится не только к часам, а ко всем наблюдаемым процессам. Если бы удаленный наблюдатель увидел часы в точке r = rg, то он бы констатировал, что и часы стоят, и все остальные процессы застыли! Поскольку эффект гравитационного красного смещения прямо связан с эффектом замедления времени, то чем ближе к сфере радиуса rg, тем эффект «покраснения» сильнее. Если бы удаленный наблюдатель попытался увидеть сигнал, испущенный из точки r = rg, то он бы обнаружил, что его частота нулевая.
Горизонт событий и истинная сингулярность
Нулевая частота означает, что нет никакого сигнала вообще! Из-под сферы радиуса rg световые сигналы не выходят, гравитационные силы не дают им вырваться во внешнюю окрестность. То есть, действительно, это сфера, где вторая космическая скорость становится равной скорости света. Поэтому из-под сферы радиуса rg невозможно распространение наружу никакой формы материи. Таким образом, эта сфера оказывается барьером, за который внешний наблюдатель не в состоянии заглянуть. Именно поэтому она получила удачное название горизонта событий, а сам объект стали называть черной дырой.
Термин черная дыра подсказал известному американскому физику-теоретику Джону Уилеру (1911–2008) один из студентов на конференции в 1967 году. Но еще ранее, в 1964 году, его использовала Анна Ивинг в докладе на собрании Американской ассоциации содействия науке.
До сих пор мы рассматривали фиксированные точки пространства и наблюдателей, связанных с ними. Теперь давайте проследим за свободно падающим телом. Пусть падение начинается из состояния покоя из удаленной области, где почти нет искривления, откуда мы будем отслеживать его траекторию. В восприятии удаленного наблюдателя история падения будет следующей. Сначала движение не будет вызывать удивления. Скорость будет нарастать медленно, затем все быстрее и быстрее, вполне соответствуя закону всемирного тяготения. Затем, на расстояниях от центра, сравнимых с гравитационным радиусом, нарастание скорости падения станет катастрофическим. Здесь мы тоже не очень удивимся, мы объясним это тем, что из зоны соответствия с гравитацией Ньютона объект попал в зону сильных искривлений. А на расстояниях долей гравитационного радиуса от горизонта событий он, к нашему изумлению, начнет резко тормозить и все медленней приближаться к горизонту событий, а в результате, никогда его не достигнет. Но здесь тоже нечего удивляться, недавно мы установили, что для удаленного наблюдателя все процессы при приближении к горизонту событий замирают, падение тела – не исключение.
Эффект того, что из-под горизонта событий ничего не выходит наружу, мы объяснили наличием чрезвычайно сильного гравитационного воздействия. Этот ответ, конечно, правильный, поскольку ничего, кроме гравитации, не рассматривается. Однако он не конструктивный, так как не позволяет понять механизм тех явлений, о которых мы только что говорили. Нет никакого представления о том, что происходит под горизонтом, и происходит ли вообще что-то. С другой стороны, мы договорились, что в эйнштейновской теории гравитационных сил, как таковых, нет вообще. Есть искривление пространства-времени. Поэтому, давайте, шаг за шагом перейдем к описанию в рамках геометрической теории.
Мы уже убедились, что в СТО использование светового конуса помогает понять многие явления. В ОТО, в искривленном пространстве-времени, имеет больший смысл представлять его не на всей диаграмме, а в окрестности каждой мировой точки. Это будет локальный световой конус, образованный касательными к световым геодезическим в данной точке. Уравнение светового конуса имеет простой вид – интервал приравнивается нулю: ds = 0.
На рис. 8.2 схематически изображены световые конусы для геометрии Шварцшильда. Предполагая, что движения происходят по радиальным направлениям, диаграмма представлена в координатах r и t. Эти координаты для удаленного наблюдателя в его собственной системе отсчета определяют истинные расстояние и время. Поэтому картина физических явлений, представленная с помощью r и t, – это как раз та картина, которую будет воспринимать удаленный наблюдатель. На рисунке видно, что на значительном удалении «лепестки» конуса расположены под углом 45°, то есть так, как в плоском пространстве-времени. Вертикальные линии соответствуют тем самым зафиксированным (неподвижным) наблюдателям, о которых мы говорили недавно. По мере приближения к черной дыре конус становится все уже, на горизонте он «слипается» и превращается в одну вертикальную линию. Вертикальная линия для удаленного наблюдателя означает, что свет «остановился», его скорость стала «нулевой». Это и означает, что на горизонте все явления замораживаются. Расчет нулевой геодезической показывает, что для удаленного наблюдателя свет никогда не достигнет горизонта.
Рис. 8.2. Пространство-время геометрии Шварцшильда в координатах удаленного наблюдателя
Частично такое поведение световых конусов связано с эффектом замедления времени при приближении к гравитирующему центру. Однако, полностью его форма, как мы уже говорили, определяется условием ds = 0, как раз оно определяет «видимую» скорость света для удаленного наблюдателя: vc = c (1 – rg/r). На значительном удалении от центра скорость близка к c, по мере приближения к центру она уменьшается, а на горизонте, действительно, обращается в нуль. Это прямо связано с формой световых конусов на рис. 8.2. Скорость материальных частиц всегда меньше скорости света (мировая линия физической частицы, находится между створками светового конуса), поэтому их «видимые» предельные скорости тоже уменьшаются при продвижении к центру, и они тоже никогда не достигнут горизонта в координатах r и t. Этот вывод еще раз подтверждает наше описание свободного падения к горизонту с точки зрения удаленного наблюдателя.