Поэтому пассажиры и машинист, пользуясь отсчетами «от поезда», склонны неосознанно применять принцип относительности и чувствовать себя неподвижными, а движущейся считать дорогу вместе со всеми станциями, Москвой и Ленинградом. Это им удобно. С этой точки зрения они могут нарисовать диаграмму движения. Как же изменится ее вид?
Да никак не изменится. Только система отсчета из прямоугольной сделается косоугольной. Старая ось времени превратится в мировую линию Москвы. Мировая линия поезда станет новой осью времени t, на которой увеличится масштаб, то есть длина отрезков, изображающих часы или минуты. Ось расстояний останется без перемен. А положение относительно поезда событий (мировых точек) определится по прежним правилам: в пересечении вспомогательных линий, параллельных осям расстояний и времени.
Взгляните:
Здесь мировая точка А — удар молнии в рельс. Как видно из построения, он произошел в 2 часа 35 минут в тридцати километрах перед поездом.
Диаграмма дает возможность пойти навстречу не только обитателям экспресса Москва — Ленинград. Каждый поезд вправе объявить себя неподвижным, и это вполне поддается геометрическому изображению: надо только его мировую линию переименовать в ось времени. Для поездов, выходящих из Москвы (а заодно и для самой Москвы), пусть получится такая картина:
Все оси времени (Ot, Ot’, Ot’’, Ot’’’ и т. д.) тут равноправны, а ось расстояний у них общая.
Различие систем чисто условное — в масштабах времени. Как же находить эти масштабы?
Отметив на одной из осей времени отрезок ОB, соответствующий часу, проводим через точку В линию, параллельную оси расстояний. На всех остальных осях времени она отметит одновременные события, а значит, отсечет отрезки, равные часу.
Эта линия, указывающая масштабы систем отсчета, называется калибровочной.
Вот, пожалуй, и готов пространственно-временной мир Октябрьской железной дороги. Полную его картину (для обоих направлений) вы при желании легко нарисуете сами. В этом мире царит ньютоновское абсолютное пространство (ось расстояний единственная на все поезда), присутствует абсолютное время (любая линия, параллельная оси расстояний, проходит через события, абсолютно одновременные во всех системах отсчета), узаконен галилеевский принцип относительности.
Так выглядит диаграмма равномерных прямых движений, которые медленны по сравнению со светом. Мир доэйнштейновский.
Четыре шага
Ну, а какова диаграмма эйнштейновского мира?
Ее построим постепенно, в несколько шагов.
Шаг первый. Рисую оси Москвы. Ускоряю поезда в миллионы раз. Они мчат со скоростями, сравнимыми со скоростью света. Из Москвы в Ленинград попадают за малые доли секунды. Их мировые линии сжались в плотный пучок.
Графики идут так густо, что разобрать ничего не возможно. Как быть?
Шаг второй. Надо растянуть оси времени. Тогда нижняя часть диаграммы вытянется вверх, и можно будет сообразить, как она устроена. Для этого придется помножить время на какую-нибудь очень большую величину, обязательно постоянную для всех систем отсчета. Такова скорость света: и велика, и одинакова для любых наблюдателей. Ее удобно взять множителем.
Поэтому вместо осей t рисуем оси ct:
Низ диаграммы пока неясен.
Шаг третий. Из Москвы в Ленинград посылаем телеграмму. Сигнал летит по проводам со скоростью света (будем считать так, хоть это и не совсем точно). Благодаря множителю с на оси времени мировая линия света (сигнала телеграммы) ляжет точно по биссектрисе угла между осью времени и осью расстояний Москвы: ведь за секунду, которая на оси времени имеет длину с, свет пробежит ту же длину с по оси расстояний. Так мы вносим первый штрих в нижнюю часть диаграммы — для оси ct чертим ось х:
Шаг четвертый. Рассуждения третьего шага годятся для любых систем отсчета. У каждой мировая линия света (говорят также— световая линия) должна делить пополам угол между осями времени и расстояний. Так и рисуем:
Ось расстояний, как видите, расщепилась. У всякой системы отсчета — собственная длина пути. Ничего неожиданного: в теории относительности так оно и есть.
Еще два шага
Внимание! Предстоит нелегкое место. Сосредоточьтесь. Речь пойдет о калибровочных линиях сверхбыстрого мира — тех, что отсекают масштабы на осях.
В диаграмме медленных движений требовалась только калибровочная линия времени, потому что ось расстояний (а значит, и единица длины) там была одна на все поезда. И тянулась калибровочная линия времени параллельно единственной оси расстояний. Это было привычно и понятно, ибо означало: в мире существует абсолютная одновременность и единое всеобщее время.
Теперь одной калибровочной не хватит. Ось расстояний расщепилась — значит, пропала абсолютная одновременность, а с нею ушли абсолютное время и абсолютная длина. Нам придется построить две калибровочные линии, чтобы одна отсекала масштабы времени на осях времени разных систем отсчета, а другая — масштабы длины на осях расстояний.
Шаг пятый. Поищем калибровочную линию времени. Рецепт прежний: она должна отсекать на осях времени концы секунд, начавшихся вместе в мировой точке О. Но если раньше моменты окончания одновременно начинавшихся секунд были абсолютно одновременны, то теперь этого нет. Зато появилась относительная одновременность, чем мы и воспользуемся.
Помните, как определяется относительная одновременность? Это было при игре «Кто первый?» и дуэли Онегина и Ленского в десятой главе. Надо, чтобы в середине прямого отрезка совпали световые сигналы от событий, произошедших на разных его концах. Сигналы совпали — значит, события одновременны.
Заметим на оси ct точку A, отсекающую ровно секунду от начала счета времени (точка О). Допустим далее, что в точке A’ лежащей на оси ct’ совпали сигналы, пришедшие из A и из A1, причем А1 — некое событие, происходящее в системе х’,ct’ на том же расстоянии от А', как и A, но с противоположной стороны. При этом условии и линия АА1 должна быть параллельна оси x’ и в точке A' делиться пополам. Налицо признак относительной одновременности — события A и А1 одновременны в системе х’,ct’.
Представим затем, что аналогичным образом определена одновременность событий А1 и A2 в системе х", ct", событий A2 и A3 в системе x’’’’, ct’’’ и т. д.
о
Догадываетесь, что достигнуто этим хитроумным построением?
Отыскано графическое правило нахождения относительной длительности секунды в разных системах отсчета на диаграмме. Геометрический рецепт, по которому узнают масштаб хода часов, движущихся относительно друг друга равномерно по одной прямой.
Соединим плавной линией точки A, A1, A2, A3 и т. д.— и выйдет калибровочная линия времени. Это не прямая, как в «медленной» диаграмме, а кривая, называемая гиперболой:
С ростом скорости системы отсчета (сверхбыстрого поезда или ракеты) калибровочная линия времени уходит в бесконечность. Наглядно видно, как долго тянутся секунды «быстрых» систем с точки зрения «медленных». А свет живет в бесконечно длинных, остановившихся секундах. Для света движение мгновенно!
Шаг шестой. Я щажу утомленного геометрией читателя и великодушно освобождаю его от новой порции умственного напряжения. Поверьте на слово, что точно так же, как калибровочная линия времени, строится калибровочная линия расстояний в нижней части диаграммы.
Почти окончательно мир сверхбыстрых движений (происходящих на прямой дороге в одну сторону) предстает перед нами в виде такого чертежа:
Значительно хитрее, чем в старой доброй классике.
Глава 13. ГОВОРЯТ ДИАГРАММЫ
Снова Алла, Элла, Валя и Галя
Диаграмма Минковского хоть и трудновата для новичка, но очень наглядна. Разобравшись, понимаешь, как много мудрого зашифровано в этом красивом букете линий. Вся теория относительности!
Вот первый постулат Эйнштейна — равноправие систем отсчета, движущихся прямолинейно и равномерно. И в диаграмме системы равноправны: каждая имеет свою ось времени, другими словами — ось относительной неподвижности.
Нашел отражение и второй постулат — оси систем расположились симметрично около световой линии. Для всех скорость света одинакова.