Далее, если у нас есть антипротоны, антинейтроны и позитроны, то из них в принципе можно составить антиатомы. Это еще не сделано, но в принципе вполне возможно. В атоме водорода, например, в центре расположен протон, вокруг которого крутится электрон. Вообразите теперь, что мы сделали антипротон и запустили вокруг него позитрон. Будет ли он крутиться? Ну прежде всего антипротон заряжен отрицательно, а позитрон — положительно, так что они будут притягиваться друг к другу с соответствующей силой, а поскольку массы у них одинаковы с протоном и электроном, то одинаково будет и все остальное. В этом состоит один из принципов симметрии в физике: уравнения, по-видимому, говорят нам, что если сделать одни часы из вещества, а другие, точно такие же, из антивещества, то они будут идти совершенно одинаково. (Разумеется, если мы поместим эти часы рядом, то они уничтожат друг друга, но это уже совсем другое дело.)
Тогда немедленно возникает вопрос. Можно сделать двое часов из вещества, причем одни «правосторонние», а другие «левосторонние». Можно, скажем, сделать не простые часы, а часы с кобальтом, магнитами и детекторами, регистрирующими b-распадные электроны и считающими их. Всякий раз, когда регистрируется электрон, секундная стрелка слегка подвигается. Но тогда зеркально отраженные часы, в которые приходит меньше электронов, не будут идти с той же скоростью. Итак, теперь нам ясно, что возможно построить такую пару часов, что правосторонние не будут согласовываться с левосторонними. Давайте сделаем часы из вещества и назовем их стандартными, или правосторонними, и сделаем еще часы тоже из вещества и назовем их левосторонними. Мы только что установили, что эти двое часов, вообще говоря, не будут идти одинаковым образом, а до этого выдающегося открытия в физике считалось, что будут. Далее мы, кроме того, полагали, что вещество и антивещество эквивалентны, т. е. если бы мы сделали часы из антивещества, такие же правосторонние, той же самой формы, то они шли бы точно так же, как и правосторонние часы из вещества, а если бы мы сделали такие же левосторонние часы, то и они тоже ходили бы точно таким же образом. Другими словами, первоначально мы полагали, что все четверо таких часов должны работать совершенно одинаково. Но теперь мы знаем, что правосторонние и левосторонние часы из вещества не одинаковы. А следовательно, право- или левосторонние часы из антивещества тоже, по-видимому, не одинаковы.
Теперь возникает очевидный вопрос: есть ли пара часов, которые идут одинаково? Иначе говоря, ведет ли себя правостороннее вещество так же, как правостороннее антивещество? Или же правостороннее вещество ведет себя так же, как левостороннее антивещество? Эксперименты с b-распадом, но не с электронным, а с позитронным b-распадом, указывают, что эта связь такова: «правое» вещество ведет себя точно так же, как «левое» антивещество.
Итак, в конечном счете право-левая симметрия все же реабилитирована! Если мы изготовим левосторонние часы, но изготовим их из материала совершенно другого рода — из антивещества, а не из вещества, то они будут идти точно таким же образом. В итоге произошло вот что: вместо двух независимых правил в нашем списке симметрии мы получили одно новое комбинированное правило, гласящее, что правостороннее вещество симметрично с левосторонним антивеществом.
Таким образом, если наш приятель из космоса сделан из антивещества и мы даем ему указания, как сделать нашу «правостороннюю» модель, то он, разумеется, сделает все наоборот. Что произошло бы, если бы после долгих переговоров мы научились другу друга строить космические корабли и договорились бы о встрече где-то в космическом пространстве, на полпути между ним и нами? Разумеется, мы бы предварительно рассказали друг другу о своих обычаях и прочем, и вот наконец вы спешите навстречу, чтобы пожать ему руку. Но будьте внимательны. Если он протянет вам левую руку — берегитесь!
§ 9. Нарушенная симметрия
А что нам делать с законами, которые только приблизительно симметричны? Самое удивительное здесь то, что в широкой области важнейших явлений—ядерные силы, электромагнитные явления и даже некоторые слабые взаимодействия типа гравитации, словом, все законы в широчайшей области физики оказываются симметричными. Но, с другой стороны, вдруг всплывает какое-то слабенькое явление и говорит: «Нет, не все на свете симметрично!» Но как могло случиться, что природа почти симметрична, а не абсолютно симметрична? Что нам с ней делать? Прежде всего давайте все-таки посмотрим, нет ли каких-то других примеров подобного рода? Да, такие примеры есть и даже не один. Например, ядерные части сил между протоном и протоном, между протоном и нейтроном или нейтроном и нейтроном в точности равны друг другу. Это некая новая симметрия — симметрия ядерных сил: в ядерных взаимодействиях протон и нейтрон вполне могут заменять друг друга. Но она, очевидно, не всеобщая симметрия, ибо между двумя нейтронами не существует электрического отталкивания, как между двумя протонами. Поэтому мы не можем всегда заменять протона нейтроном, это, вообще говоря, неверно, хотя и является хорошим приближением. Почему хорошим,? Да потому, что ядерные силы гораздо больше электрических. Так что это тоже «почти симметрия». Итак, подобные примеры все же есть и в других областях.
Нас всегда тянет рассматривать симметрию как некоего рода совершенство. Это напоминает старую идею греков о совершенстве кругов. Им было даже страшно представить, что планетные орбиты не круги, а только почти круги. Но между кругом и почти кругом разница немалая, а если говорить об образе мыслей, то это изменение просто огромно. Совершенство и симметрия круга исчезают как только чуть-чуть исказить его. Деформируйте немного круг, и это будет концом его симметрии и совершенства. Спрашивается, почему же орбиты только почти круги? Это куда более трудный вопрос. Истинное движение планет, вообще говоря, должно происходить по эллипсам, но в течение веков благодаря приливным силам они превратились в почти окружности. Но везде ли есть подобная проблема? Если бы пути планет были действительно кругами, то проблема не требовала бы пространных объяснений — они просты. Но поскольку эти пути только почти круговые, то объяснить нужно очень многое. Результат же превращается в большую динамическую проблему, и теперь нам нужно объяснить, привлекая приливные силы или что-то еще, почему они приблизительно симметричны.
Итак, наша цель понять, откуда взялась симметрия. Почему природа столь близка к симметрии? По этому вопросу ни у кого нет никакой разумной мысли. Единственное, что я могу предложить вам,— это старое японское предание. В японском городе Никко есть ворота, которые японцы называют самыми красивыми воротами страны. Они были построены в период большого влияния китайского искусства. Это необычайно сложные ворота, со множеством фронтонов, изумительной резьбой и большим количеством колонн, на основании которых вырезаны драконьи головы, божества и т. п. Но, приглядевшись, можно заметить, что в сложном и искусном рисунке на одной из колонн некоторые из его мелких деталей вырезаны вверх ногами. В остальном рисунок полностью симметричен. Спрашивается, для чего это было нужно? Как говорит предание, это было сделано для того, чтобы боги не заподозрили человека в совершенстве. Ошибка была сделана намеренно, дабы не вызвать зависти и гнева богов.
Мы можем, вообще говоря, подхватить эту мысль и сказать, что истинное объяснение приблизительной симметрии мира состоит в следующем: боги сотворили свои законы только приближенно симметричными, чтобы мы не завидовали их совершенству!
КОНЕЦ ПЕРВОГО ТОМА
* Их построил архитектор и резчик Цингору в середине XVII века. —Прим. ред.
* Автор не зря предупреждал, что обо всем содержании этой главы можно сказать: «насколько нам известно сегодня». Ведь это уже «передний край» физики, где возможны любые изменения. Так и вышло. Совсем недавно было установлено, что симметрия между правым веществом и левым антивеществом не всегда существует. Комбинированная симметрия тоже оказалась приближенной. Мы пока не знаем, как и почему это происходит, пока строим только гипотезы, но вполне возможно, что, когда дело дойдет до встречи с нашим приятелем из другого мира, мы предварительно сможем выяснить, сделан ли он из вещества, как и мы, или из антивещества. — Прим. ред.
* Сейчас уже научились делать еще два антиизотопа водорода: антидейтрон и антитритий. — Прим. ред.