MyBooks.club
Все категории

Ричард Фейнман - 6. Электродинамика

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Ричард Фейнман - 6. Электродинамика. Жанр: Физика издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
6. Электродинамика
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
130
Читать онлайн
Ричард Фейнман - 6. Электродинамика

Ричард Фейнман - 6. Электродинамика краткое содержание

Ричард Фейнман - 6. Электродинамика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

6. Электродинамика читать онлайн бесплатно

6. Электродинамика - читать книгу онлайн бесплатно, автор Ричард Фейнман

Но находите ли вы график, приведенный на фиг. 20.5, вос­хитительным? В нем ведь содержится существенно больше раз­личных деталей, чем мы в состоянии постичь, когда видим ра­дугу: наши глаза не могут схватить доподлинную форму спектра. А вот глазам радуга все же кажется восхитительной. Хватает ли у вас воображения, чтобы в спектральных кривых увидеть всю ту красоту, которую мы видим, смотря на радугу? У меня — нет.

Фиг. 20.5. Зависимость интен­сивности электромагнитных волн от длины волны под тремя углами (отсчитываемыми от направления, противоположного направлению на Солнце).

Доступно наблюдению лишь в опре­деленных метеорологических усло­виях.

Но представим себе, что у меня имеется график зависи­мости коэффициента отражения кристаллов хлористого натрия от длины волны в инфракрасном участке спектра и от угла. Я могу вообразить себе, как это представилось бы моим глазам, обладай они способностью видеть в инфракрасном свете. Должно быть, это был бы какой-то яркий, насыщенный «зеленый цвет», на который накладывались бы отражения от поверхностей «ме­таллически-красных» тонов. Это выглядело бы поистине вели­колепно, но я не знаю, способен ли я, взглянув на график коэф­фициента отражения NaCl, снятый на каком-то приборе, ска­зать, что он столь же прелестен.

Но, с другой стороны, хоть мы и не можем видеть красоту тех или иных частных измерений, мы можем утверждать, что постигаем своеобразную красоту уравнений, описывающих всеобщие физические законы. Например, в волновом уравне­нии (20.9) очень красива та правильность, с какой в нем распо­ложены х, у, z и t. И эта приятная симметрия появления х, у, z, t намекает на ту величественную красоту, которая таится в четырех равнозначных координатах, в возможности того, что у пространства есть четырехмерная симметрия, в возможности проанализировать ее и развить специальную теорию относи­тельности. Так что существует еще интеллектуальная красота, ассоциируемая с уравнениями.

§ 4. Сферические волны

Мы видели, что существуют решения волнового уравнения, отвечающие плоским волнам, и что любая электромагнитная волна может быть описана как суперпозиция многих плоских волн. В определенных случаях, однако, удобнее описывать волновое поле в другой математической форме. Я хотел бы сей­час разобрать теорию сферических волн — волн, которые соот­ветствуют сферическим поверхностям, расходящимся из неко­торого центра. Когда вы бросаете камень в пруд, то по водной глади побежит рябь в виде круговых волн — это двумерные волны. Сферические волны похожи на них, только распростра­няются они во всех трех измерениях.

Прежде чем начать описание сферических волн, немного зай­мемся математикой. Пусть имеется функция, зависящая только от радиального расстояния r точки от начала координат, иными словами, сферически симметричная функция. Обозначим ее ш(r), где под r подразумевается

т. е. расстояние от начала координат. Чтобы узнать, какие функ­ции ш (r) удовлетворяют волновому уравнению, нам понадо­бится выражение для лапласиана ш. Значит, нам нужно найти сумму вторых производных ш по х, по у и по z. Через ш'(r) мы обозначим первую производную i|) по r, а через ш"(r) — вторую. Сначала найдем производные по х. Первая производная равна

Вторая производная по х равна

Частные производные r по x можно получить из

так что вторая производная ш no x принимает вид

(20.28)

Точно так же и

(20.29)

(20.30)

Лапласиан равен сумме этих трех производных. Вспоминая,

что x2+y2+z2=r2, получаем

(20.31)

Часто бывает удобнее записывать уравнение в следующей

форме:

(20.32)

Проделав дифференцирование, указанное в (20.32), вы убеди­тесь, что правая часть здесь та же, что и в (20.31).

Если мы хотим рассматривать сферически симметричные поля, которые могут распространяться как сферические волны, то ве­личины, описывающие поля, должны быть функцией как r, так и t. Предположим, что нам нужно знать, какие функции ш(r, t) являются решениями трехмерного волнового уравне­ния

(20.33)

Поскольку ш(г, t) зависит от пространственных координат только через г, то в качестве лапласиана можно использовать выражение (20.32). Но для точности, поскольку ш зависит также и от t, нужно дифференцирование по r записывать в виде частной производной. Волновое уравнение обращается в

Его и предстоит нам решать. Оно выглядит сложнее, чем в случае плоских волн. Но заметьте, что если умножить это урав­нение на r, то получится

(20.34)

Это уравнение говорит нам, что функция r ш удовлетворяет одномерному волновому уравнению по переменной r. Исполь­зуя часто подчеркивавшийся нами общий принцип, что у одних и тех же уравнений и решения одни и те же, мы приходим к выводу, что если r ш окажется функцией одного только (r-ct), то оно явится решением уравнения (20.34). Итак, мы обнаружи­ваем, что сферические волны обязаны иметь вид

Или, как мы видели раньше, можно в равной степени считать r ш имеющим форму

Деля на r, находим, что характеризующая поле величина ш (чем бы она ни была) имеет вид

(20.35)

Такая функция представляет сферическую волну общего вида, распространяющуюся от начала координат со скоростью с. Если на минуту забыть об r в знаменателе, то амплитуда волны как функция расстояния от начала координат в каждый данный момент обладает определенной формой, которая рас­пространяется со скоростью с. Однако r в знаменателе говорит нам, что по мере того, как волна распространяется, ее амплиту­да убывает пропорционально 1/r. Иными словами, в отличие от плоской волны, амплитуда которой остается при движении все время одной и той же, амплитуда сферической волны бес­прерывно спадает (фиг. 20.6).

Фиг. 20.6. Сферическая волна ш=f(t-r/с)/r.

а — зависимость ш от r при t=tl и ma же волна в более поздний момент времени t2; б — зависимость ш от t при r=r1 и та же самая волна на расстоянии r2.

Этот факт легко понять из про­стых физических соображений.

Мы знаем, что плотность энергии в волне зависит от квадрата амплитуды волны. По мере того как волна разбегается, ее энергия расплывается на все большую и большую площадь, пропорциональную квадрату радиуса волны. Если полная энер­гия сохраняется, плотность энергии должна убывать как 1/r2, а амплитуда — как 1/r. Поэтому формула (20.35) для сфери­ческой волны вполне «разумна».

Мы игнорировали другое возможное решение одномерного волнового уравнения

или

Это тоже сферическая волна, но бегущая внутрь, от больших r к началу координат.

Тем самым мы делаем некоторое специальное предположе­ние. Мы утверждаем (без какого-либо доказательства), что волны, создаваемые источником, всегда бегут только от него. Поскольку мы знаем, что волны вызываются движением заря­дов, мы настраиваемся на то, что волны бегут от зарядов. Было бы довольно странно представлять, что прежде чем заряды были приведены в движение, сферическая волна уже вышла из бесконечности и прибыла к зарядам как раз в тот момент, когда они начали шевелиться. Такое решение возможно, но опыт по­казывает, что, когда заряды ускоряются, волны распростра­няются от зарядов, а не к ним. Хоть уравнения Максвелла предоставляют обеим волнам равные возможности, мы привле­каем добавочный факт, основанный на опыте, что «физическим смыслом» обладает только расходящаяся волна.

Нужно, однако, заметить, что из этого добавочного пред­положения вытекает интересное следствие: мы теряем при этом симметрию относительно времени, которая есть у уравнений Максвелла. Как исходные уравнения для Е и В, так и вытекающие из них волновые уравнения при изменении знака t не ме­няются. Эти уравнения утверждают, что любому решению, ко­торое отвечает волне, бегущей в одну сторону, отвечает столь же правильное решение для волны, бегущей в обратную сторону. И утверждая, что мы намерены брать в расчет только расходя­щиеся сферические волны, мы делаем тем самым важное допол­нительное предположение. (Очень тщательно изучалась такая электродинамика, в которой обходятся без этого дополнитель­ного предположения. Как это ни удивительно, но во многих обстоятельствах она не приводит к физически абсурдным ре­зультатам. Однако обсуждение этих идей теперь увлекло бы нас чересчур в сторону. Мы поговорим об этом подробнее в гл. 28.)


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


6. Электродинамика отзывы

Отзывы читателей о книге 6. Электродинамика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.