Из всех встречающихся в природе элементов — тех разных типов атомов, что могут влиять на спектр звезды, — астрофизики используют один конкретный элемент для того, чтобы определять возраст наиболее молодых звезд. Речь идет о литии — третьем по простоте строения и легкости элементе периодической таблицы, знакомом некоторым землянам в качестве активного ингредиента ряда антидепрессантов. В периодической таблице элементов литий занимает место сразу вслед за водородом и гелием, которые гораздо более знамениты, потому что в космосе их несметное количество. В первые минуты своего существования Вселенная синтезировала ядра гелия из водорода в огромных количествах, но выработала лишь относительно крошечные объемы других, более тяжелых ядер. В итоге литий остался довольно редким элементом, и астрофизики отмечают тот факт, что звезды почти не производят дополнительных партий лития, они только потребляют уже имеющиеся его запасы. У лития, так сказать, билет в один конец: каждой звезде гораздо проще уничтожить литий, чем создать его. Поэтому его космические запасы постепенно таяли, тают и будут таять. Если вам хочется заполучить себе немного лития, не медлите и приобретайте его сейчас же.
Для астрофизиков эта простая особенность лития — невероятно полезный инструмент измерения возраста звезд. Все звезды приходят в мир с соответствующим запасом лития, оставшимся после термоядерного синтеза, что протекал во Вселенной в первые полчаса ее существования, а также непосредственно во время Большого взрыва. Что значит «соответствующий запас»? Это значит — примерно одно ядро лития на сто миллиардов ядер других элементов. После того как новорожденная звезда приходит в наш мир с таким «богатым» запасом лития, дальнейшая судьба этого элемента весьма незавидна: ядерные реакции в недрах звезды начинают понемногу перерабатывать его. Стабильное и иногда эпизодическое смешение вещества в ядре звезды с веществом извне уносит получающийся материал к ее поверхности, поэтому спустя тысячи лет внешние слои звезды могут показать нам, что же раньше происходило в ее центре.
Когда астрофизики ищут в небе самые молодые звезды, они следуют простейшему правилу: искать те звезды, в которых больше всего лития. Соотношение количества ядер лития каждой звезды к, скажем, количеству ядер водорода (что можно определить по спектру ее излучения) помогает подобрать для этой звезды место на графике, отображающем корреляцию возраста звезды и лития во внешних ее слоях. Этот метод позволяет астрофизикам определять с большой точностью самые юные звезды в конкретном кластере и приписывать каждой из них основанный на литиевом анализе возраст. Так как звезды очень продуктивно разрушают литий, в более старых звездах обнаружить его почти невозможно. Соответственно, такой подход хорош только в применении к звездам, чей возраст не превышает несколько сотен миллионов лет: для этих юных особ литиевый метод работает просто замечательно! Недавние исследования двух дюжин молодых звезд в туманности Ориона, масса каждой из которых примерно равна массе Солнца, показали, что их возраст составляет от 1 до 10 миллионов лет. Наступит день, когда астрофизикам удастся найти еще более молодые звезды, ну а пока 1 миллион лет — это лучшее, что они могут нам предложить.
Долгое время после своего рождения группы молодых звезд только распыляют скопления газа, из которого образовались, превращают водород в гелий внутри своих ядер и пожирают запасы лития. Но ничто не вечно. За многие миллионы лет большинство потенциальных звездных кластеров, подверженных постоянному гравитационному воздействию проплывающих мимо огромных облаков, «испаряется», и их участники присоединяются к числу прочих звезд галактики.
Спустя 5 миллиардов лет после формирования Солнца определить в галактике его родственниц и узнать, живы ли они еще, невозможно. Все звезды Млечного Пути и других галактик с низкой массой, из-за чего они очень медленно потребляют свое топливо, живут практически бесконечно. Звезды «в среднем весе», вроде Солнца, рано или поздно превращаются в красных гигантов, увеличивая границы своих внешних газовых слоев в сотни раз и умирая медленной смертью. Эти внешние слои столь условно связаны со звездой, что постепенно отчаливают прочь в открытый космос, обнажая то самое ядро, полное переработанного ядерного топлива, что кормило звезду на протяжении всех 10 миллиардов лет ее жизни. Газ, который возвращается в межзвездное пространство, будет так или иначе подхвачен проходящими мимо облаками и когда-нибудь примет участие в новом этапе звездообразования.
Несмотря на их редкость в природе, звездам с самой высокой массой достались почти все козыри эволюции. Их огромная масса дает им самую мощную светимость — для некоторых она в миллион раз выше светимости Солнца. Так как эти звезды перерабатывают ядерное топливо гораздо быстрее своих малых товарок, они проживают жизнь быстрее других: всего за несколько миллионов лет, а то и меньше. Непрекращающийся термоядерный синтез внутри звезд с высокой массой позволяет им производить десятки элементов, начиная с водорода и заканчивая гелием, углеродом, азотом, кислородом, неоном, магнием, кремнием, кальцием и так далее вплоть до железа. Ближе к концу своей жизни такие звезды, излучая последние вспышки света, все еще вырабатывают новые химические элементы, иногда затмевая своим сиянием всю родную галактику. Астрофизики называют каждую такую вспышку сверхновой звездой: при внешнем сходстве со сверхновыми звездами типа Ia, описанными в главе 5, они совсем другие по природе. Энергия взрыва сверхновой звезды раскидывает химические элементы прошлой и самой свежей выработки по всей галактике, проделывая дыры в распределении газа и обогащая близлежащие облака новым сырьем образования твердых частиц космической пыли. Этот взрыв на сверхзвуковой скорости прорывается сквозь межзвездные облака, сжимая их газовое и пылевое содержимое и, вполне возможно, создавая ряд газовых карманов высокой плотности, из которых потом смогут образоваться новые звезды.
Вселенной от таких сверхновых звезд перепадает великий дар — все химические элементы, помимо водорода и гелия: те самые элементы, из которых могут образовываться планеты, простейшие организмы и люди. Мы живем на Земле только потому, что миллиарды лет назад где-то в космосе взорвалось бессчетное количество звезд — в те далекие эпохи истории Млечного Пути, когда Солнца и его планет еще и в помине не было и им лишь предстояло собраться в единые скопления внутри пыльного и темного космического межзвездного облака, которое, в свою очередь, несло в себе химические богатства, унаследованные от предыдущих поколений звезд с высокой массой.
Персональная премия авторов этой книги за самый неоцененный научный вклад XX века присуждается открытию о том, что сверхновые звезды — мощные финальные взрывные аккорды особо крупных умирающих звезд — являются первостепенным источником тяжелых элементов в природе. Это относительно невоспетое озарение впервые было высказано в научной статье, опубликованной в 1957 году в американском журнале Reviews of Modern Physics («Обзоры современной физики») под заголовком «Синтез элементов в звездах» (Э. Маргарет Бербидж, Джеффри Р. Бербиджа, Уильяма Фаулера и Фреда Хойла). В своей статье четверо ученых представили теоретическую и вычислительную схему, которая по-новому трактовала и объединяла домыслы других ученых за последние 40 лет в двух основных областях: речь идет об источниках звездной энергии и о преобразованиях химических элементов.
Космическая ядерная химия и попытки понять, как в процессе термоядерного синтеза появляются и разрушаются разные типы ядер, всегда были непростым делом. В числе самых главных вопросов непременно значились следующие: как ведут себя химические элементы под воздействием разных температур и разного уровня давления? Соединяются ли эти элементы или распадаются? Насколько это трудоемкий процесс? Выделяется ли при этих процессах новая кинетическая энергия или потребляется существующая? Как эти процессы отличаются между собой в случае с каждым отдельным элементом периодической таблицы?
Что для вас значит периодическая таблица химических элементов? Если вы не отличаетесь от большинства школьников, вы наверняка помните огромную таблицу на стене своего класса, украшенную таинственными ячейками. Некие загадочные буквы и символы в ее прямоугольниках ассоциировались с лабораториями, в которые незачем заходить без явной на то причины. Но для тех, кому знакомы ее секреты, эта таблица — книга рассказов о космической жестокости, в результате которой ее компоненты, собственно, и появились на свет. В периодической таблице перечислены все известные человечеству природные элементы Вселенной, выстроенные от малого до великого по мере увеличения количества протонов, приходящихся на ядро каждого из них. Два самых легких элемента — это водород (один протон на ядро) и гелий (два). Как верно подметили четверо авторов той самой статьи 1957 года, при наличии должных условий — температуры, плотности и давления — звезда может использовать свои запасы водорода и гелия того, чтобы собрать из них все остальные элементы периодической таблицы.