MyBooks.club
Все категории

Ричард Фейнман - 6. Электродинамика

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Ричард Фейнман - 6. Электродинамика. Жанр: Физика издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
6. Электродинамика
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
129
Читать онлайн
Ричард Фейнман - 6. Электродинамика

Ричард Фейнман - 6. Электродинамика краткое содержание

Ричард Фейнман - 6. Электродинамика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

6. Электродинамика читать онлайн бесплатно

6. Электродинамика - читать книгу онлайн бесплатно, автор Ричард Фейнман

(21.15)

(21.16)

Поля Е и В получатся дифференцированием потенциалов [используются выражения (21.2) и (21.3)]. Кстати, можно про­верить явно, что j и А, полученные из (21.15) и (21.16), дей­ствительно удовлетворяют равенству (21.6).

Мы решили уравнения Максвелла. В любых обстоятель­ствах, если только заданы токи и заряды, из этих интегралов можно определить потенциалы, а затем, продифференцировав их, получить поля. Тем самым с теорией Максвелла покончено. И это позволяет нам также замкнуть круг и вернуться к нашей теории света, потому что достаточно только подсчитать элек­трическое поле движущегося заряда, чтобы связать все это с нашей прежней теорией света. Все, что нам остается сделать,— это взять движущийся заряд, вычислить из этих интегралов его потенциал и затем из -Сj-dA/dt, дифференцируя, найти Е. Мы должны получить формулу (21.1). Работы придется проде­лать много, но принцип ясен.

Итак, мы дошли до центра электромагнитной вселенной. У нас в руках полная теория электричества, магнетизма и света, полное описание полей, создаваемых движущимися зарядами, и многое, многое другое. Все сооружение, воздвигнутое Максвел­лом, во всей его полноте, красе и мощи сейчас перед нами. Это, пожалуй, одно из величайших свершений физики. И чтобы напомнить о его важности, мы переписываем все формулы вместе и обводим их красивой рамкой.

§ 4. Поля колеблющегося диполя

Мы пока еще не провели обещанного вывода формулы (21.1) для электрического поля движущегося точечного заряда. Даже зная то, что мы уже знаем, этот вывод все равно проделать не­легко. Нам не удалось обнаружить формулы (21.1) нигде, ни в каких книжках и статьях (кроме первых выпусков этих лек­ций). Это свидетельствует о том, что вывод ее не прост. (Поля движущегося заряда записывались неоднократно и в других видах, которые все, конечно, эквивалентны.) Мы ограничимся поэтому здесь тем, что просто покажем на нескольких приме­рах, что (21.15) и (21.16) приводят к тем же результатам, что и (21.1). Первым делом мы покажем, что при том единственном условии, что движение заряженной частицы является нереля­тивистским, (21.1) приводит к правильной величине полей. (Уже этот частный случай покрывает 90% всего того, что было сказано о явлении света.)

Рассмотрим такую ситуацию, когда имеется сгусток заря­дов, каким-то образом перемещающийся в небольшой обла­сти; требуется найти создаваемые им где-то вдалеке от этого места поля.

Можно поставить вопрос и иначе: мы найдем поле на произвольном расстоянии от точечного заряда, который почти незаметно колеблется вверх и вниз. Поскольку свет обычно испускают такие нейтральные тела, как атомы, то мы будем считать, что наш колеблющийся заряд q расположен вблизи неподвижного, равного по величине, но противоположного по знаку заряда. Если расстояние между центрами зарядов рав­но d, то у зарядов появится дипольный момент p=qd, который мы будем считать функцией времени. Следует ожидать, что поблизости от зарядов запаздыванием поля можно будет прене­бречь; электрическое поле будет в точности таким же, как и то, которое получалось раньше для электростатического диполя [но, конечно, с мгновенным дипольным моментом p(t)]. Однако при большом удалении в формуле для поля должно появиться добавочное слагаемое, которое меняется как 1/r и зависит от того, каково ускорение заряда в направлении, поперечном к лучу зрения. Посмотрим, получится ли у нас этот результат. Начнем с вычисления векторного потенциала А при помощи (2.16). Пусть плотность зарядов в сгустке есть r(х, у, z) и весь он движется все время со скоростью v. Тогда плотность тока j(x, у, z) равна vr(x,y, z). Удобно систему координат располо­жить так, чтобы ось z была направлена по v; тогда геометрия нашей задачи изобразится так, как показано на фиг. 21.2. Нас интересует интеграл

(21.17)

Если размеры заряда-сгустка на самом деле намного мень­ше, чем r12, то r12 в знаменателе можно положить равным r (расстоянию от центра сгустка) и вынести r за знак интеграла. Кроме того, мы собираемся положить и в числителе r12=r, хотя это и не совсем верно. А неверно это потому, что на самом деле, скажем, полагается брать j в верхней части сгустка совсем не в тот момент, когда в нижней, а немного в другое время.

Фиг. 21.2. Потенциалы в точке (1) даются интегралами от плот­ности заряда r.

По­лагая r12=r в j(t-r12/с), мы вычисляем плотность тока для всего сгустка в одно и то же время (t-r/с). Это приближение годится лишь тогда, когда скорость v заряда много меньше с. Мы, стало быть, ведем расчет в нерелятивистском случае. После замены j на rv интеграл (21.17) превращается в

Раз скорость всех зарядов в сгустке одна и та же, этот инте­грал просто равен v/r, умноженному на общий заряд q. Но qv — это как раз dp/dt (скорость изменения дипольного момента), только надо ее, конечно, определять в более раннее время (t-r/с). Запишем эту величину так: p(t-r/с). Итак, мы полу­чаем для векторного потенциала

Мы узнали, что ток в меняющемся диполе создает векторный потенциал в форме сферических волн, источник которых обла­дает силой р’/4pe0с2.

Теперь из B=СXA можно получить магнитное поле. По­скольку р’ направлен по оси z, у А есть только z-компонента; в роторе остаются только две ненулевые производные. Значит, Вх=дАг/ду и В=—дАz/дх. Поглядим сперва на Вх:

(21.19)

Чтобы продифференцировать, вспомним, что r=Ц(x:2+y2+z2), так что

Но мы помним, что дr/ду=y/r; значит, первое слагаемое даст

(21.21)

что убывает как 1/r2, т. е. как поле статического диполя (потому что в данном направлении у/r постоянно).

Второе слагаемое в (21.20) приводит к новому эффекту. Если провести в нем дифференцирование, то получится

(21.22)

где р” — просто вторая производная р по t. Вот это-то получаю­щееся от дифференцирования числителя слагаемое и ответственно за излучение. Во-первых, оно описывает поле, убываю­щее на расстоянии как i/r, во-вторых, зависит от ускорения заряда. Теперь вам должно быть ясно, как мы собираемся по­лучить формулу типа (21.1'), описывающую световое излучение.

Явление это настолько интересно и важно, что стоит немного подробнее разобраться в том, откуда берется это «радиацион­ное» слагаемое. Мы начинали с выражения (21.18), зависящего от r как 1/r и тем самым похожего на кулонов потенциал (если не обращать внимания на запаздывающий множитель в числи­теле). Почему же когда мы, желая получить поле, дифферен­цируем по пространственным координатам, то не получаем просто поля вида 1/r2 (конечно, с соответствующей временной задержкой)?

А вот почему. Представьте, что диполь приведен в колеба­тельное движение вверх и вниз. Тогда

Если начертить график зависимости Аrот r в каждый данный момент, то получится кривая, показанная на фиг. 21.3. Амплитуда в пиках убывает как 1/r, но, кроме того, еще имеются пространственные колебания, которые ограничены огибающей вида 1/r. Пространственные производные в формуле пропор­циональны наклону кривой. Из фиг. 21.3 видно, что встречаются намного более крутые наклоны, чем наклон самой кривой 1/г. Очевидно, что при данной частоте наклоны в пиках пропорцио­нальны амплитуде волны, меняющейся как 1/r. Тем самым объяс­няется степень спадания радиационного слагаемого с расстоя­нием.

Все это получается оттого, что временные вариации в источ­нике превращаются в пространственные вариации, когда волны начинают разбегаться в стороны, магнитные же поля зависят от пространственных производных потенциала.

Фиг. 21.3. Зависимость ве­личины А от r в момент t для сферической волны от колеблющегося диполя.

Теперь возвратимся назад и закончим наши расчеты магнит­ного поля. Для Вхмы получили (21.21) и (21.22). Поэтому

(21.1')

С помощью точно таких же выкладок мы придем к

И все это можно объединить в одну красивую векторную фор­мулу:

(21.23)

А теперь взгляните на нее. Прежде всего на больших удале­ниях (когда r велико) следует принимать в расчет только р. Направление В дается вектором pXr, перпендикулярным и к радиусу r, и к ускорению (фиг. 21.4). Все сходится с тем, что получилось бы из формулы (21.1').


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


6. Электродинамика отзывы

Отзывы читателей о книге 6. Электродинамика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.