MyBooks.club
Все категории

Ричард Фейнман - 7. Физика сплошных сред

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Ричард Фейнман - 7. Физика сплошных сред. Жанр: Физика издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
7. Физика сплошных сред
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
125
Читать онлайн
Ричард Фейнман - 7. Физика сплошных сред

Ричард Фейнман - 7. Физика сплошных сред краткое содержание

Ричард Фейнман - 7. Физика сплошных сред - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

7. Физика сплошных сред читать онлайн бесплатно

7. Физика сплошных сред - читать книгу онлайн бесплатно, автор Ричард Фейнман

Обра­тите внимание, что наклон прямой (36.38) пропорционален аб­солютной температуре Т. Таким образом, при высоких темпера­турах получится прямая, подобная b1Решением будет только М/Мнас=0. Иначе говоря, когда намагничивающее поле Я равно нулю, намагниченность тоже равна нулю. При низких температурах мы получили бы линию типа b2 и стали возможны два решения для М/Мнас: одно М/Мнас=0, а другое М/Мнас порядка единицы. Оказывается, что только второе решение устойчиво, в чем можно убедиться, рассматривая малые вариа­ции в окрестности указанных решений.

В соответствии с этим при достаточно низких температурах магнитные материалы должны намагничиваться спонтанно. Короче говоря, когда тепловое движение достаточно мало, то взаимодействие между атомными магнитиками заставляет их выстраиваться параллельно друг другу, получается постоянно намагниченный материал, аналогичный пос­тоянно поляризованным сегнетоэлектрикам, о которых мы говорили в гл. 11 (вып. 5).

Если мы отправимся от высоких температур и начнем дви­гаться вниз, то при некой критической температуре, называемой температурой Кюри Тc, неожиданно проявляется ферромагнит­ное поведение. Эта температура соответствует на фиг. 36.14 линии b3, касательной к кривой а, наклон которой равен еди­нице. Так что температура Кюри определяется из равенства

При желании уравнение (36.38) можно записать в более прос­том виде через Тc:

Что же получается для малых намагничивающих полей Н? Из фиг. 36.14 нетрудно понять, что получится, если нашу пря­мую линию сдвинуть немного направо. В случае низкой темпе­ратуры точка пересечения немного сдвинется направо по слабо наклоненной части кривой а и изменения М будут сравнительно невелики. Однако в случае высокой температуры точка пересе­чения побежит по крутой части кривой а и изменения М станут относительно быстрыми. Эту часть кривой мы фактически мо­жем приближенно заменить прямой линией а с единичным наклоном и написать

Теперь можно разрешить уравнение относительно М/Мнас:

Мы получаем закон, несколько напоминающий закон для па­рамагнетизма:

Отличие состоит, в частности, в том, что мы получили намагни­ченность как функцию Н, с учетом взаимодействия атомных магнитиков, однако главное то, что намагниченность обратно пропорциональна разности температур Т и Тс, а не просто абсолютной температуре Т. Пренебрежение взаимодействием между соседними атомами соответствует l=0, что, согласно уравнению (36.39), означает Тс=0. Результат при этом полу­чится в точности таким же, как и в гл. 35.

Нашу теоретическую картину можно сверить с эксперимен­тальными данными для никеля. На опыте обнаружено, что ферромагнитные свойства никеля исчезают, когда температура поднимается выше 631° К. Это значение можно сравнить со значением Тс, вычисленным из равенства (36.39). Вспоминая, что Mнас=mN, мы получаем

Из плотности и атомного веса никеля находим

N=9,1·1028м-3. А вычисление m, из уравнения (36.28) и подстановка l=1/3 дает

Tс=0,24°K.

Различие с экспериментом примерно в 2600 раз! Наша теория ферромагнетизма полностью провалилась!

Можно попытаться «подправить» нашу теорию, как это сде­лал Вейсс, предположив, что по каким-то неизвестным причи­нам К равно не 1/3, а (2600) ·1/3, т. е. около 900. Оказывается, что подобная величина получается и для других ферромагнит­ных материалов типа железа. Вернемся к уравнению (36.36) и попробуем понять, что это может означать? Мы видим, что большая величина Я означает, что Ва(локальное поле, дейст­вующее на атом) должно быть больше, много больше, чем мы думали. Фактически, записывая Н = В-M/e0c2, мы получили

В соответствии с нашей первоначальной идеей, когда мы при­нимали l=1/3, локальная намагниченность М уменьшает эффективное поле Вана величину — 2М/Зe0. Даже если бы наша модель сферической полости была не очень хороша, мы все равно ожидали бы некоторого уменьшения. Вместо того чтобы объяснить явление ферромагнетизма, мы вынуждены считать, что намагниченность увеличивает локальное поле в огромное число раз: в тысячу и даже больше. По-видимому, не существует какого-то разумного способа для создания действующего на атом поля такой ужасной величины, ни даже поля нужного знака! Ясно, что наша «магнитная» теория ферромагнетизма потерпела досадный провал. Мы вынуждены заключить, что в ферромагнетизме мы имеем дело с какими-то немагнитными взаимодействиями между вращающимися электронами соседних атомов. Это взаимодействие должно порождать у соседних спинов сильную тенденцию к выстраиванию в одном направлении. Мы увидим позднее, что это взаимодействие связано с квантовой механикой и принципом запрета Паули. И, наконец, посмотрим, что происходит при низких темпе­ратурах, когда Т<Tс. Мы видели, что даже при Н=0 в этом случае должна существовать спонтанная намагниченность, определяемая пересечением кривых а и b2 на фиг. 36.14. Если мы, изменяя наклон линии b2, будем находить М для различ­ных температур, то получим теоретическую кривую, пока­занную на фиг. 36.15.

Фиг. 36.15. Зависимость спонтан­ной намагниченности никеля от тем­пературы.

Для всех ферромагнитных материалов, атомные моменты которых обусловлены одним электроном, эта кривая должна быть одной и той же. Для других материалов подобные кривые могут отличаться лишь немного.

В пределе, когда Т стремится к абсолютному нулю, М стре­мится к Mнac. При увеличении температуры намагниченность уменьшается, падая до нуля при температуре Кюри. Точками на фиг. 36.15 показаны экспериментальные данные для никеля. Они довольно хорошо ложатся на теоретическую кривую. Хотя мы и не понимаем лежащего в основе механизма, но общие свойства теории, по-видимому, все же правильны.

Но в нашей попытке понять ферромагнетизм есть еще одна неприятная несогласованность, которая должна нас заботить. Мы нашли, что выше некоторой температуры материал должен вести себя как парамагнитное вещество, намагниченность кото­рого пропорциональна Н (или В), а ниже этой температуры должна возникать спонтанная намагниченность. Но при пост­роении кривой намагничивания для железа мы этого как раз и не обнаружили. Железо становится постоянно намагниченным только после того, как мы его «намагнитим». А в соответствии с только что высказанными идеями оно должно намагничиваться само! Что же неверно? Оказывается, что если вы рассмотрите достаточно маленький кристалл железа или никеля, то увидите что он и впрямь полностью намагничен! А большой кусок железа состоит из массы таких маленьких областей, или «доменов», которые намагничены в различных направлениях, так что средняя намагниченность в большом масштабе оказывается равной нулю. Однако в каждом маленьком домене железо все же намагничивает само себя, причем М приблизительно равно Mнac. Как следствие этой доменной структуры свойства боль­шого куска материала должны быть совершенно отличны от микроскопических, как это и оказывается на самом деле.

* В системе, которой пользуется здесь автор, В=Н+1/e0c2 М, но

D=e0E+P. В старой, доброй системе единиц писали В=m0Н=(1/e0c2)Н и

D=e0Е или В=(Н+4pМ) и D=Е+4pР. Надо быть очень внима­тельным, когда формулы для магнетиков пишутся по аналогии с формулами для диэлектриков (ср. § 6).— Прим. ред.


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


7. Физика сплошных сред отзывы

Отзывы читателей о книге 7. Физика сплошных сред, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.