MyBooks.club
Все категории

Яков Перельман - Занимательная физика (книга 2)

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Яков Перельман - Занимательная физика (книга 2). Жанр: Физика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Занимательная физика (книга 2)
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
9 сентябрь 2019
Количество просмотров:
146
Читать онлайн
Яков Перельман - Занимательная физика (книга 2)

Яков Перельман - Занимательная физика (книга 2) краткое содержание

Яков Перельман - Занимательная физика (книга 2) - описание и краткое содержание, автор Яков Перельман, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

Занимательная физика (книга 2) читать онлайн бесплатно

Занимательная физика (книга 2) - читать книгу онлайн бесплатно, автор Яков Перельман

Перед нами новый вопрос, на который, впрочем, нетрудно ответить. Ответ станет ясен, если принять во внимание, что, когда мы находимся под водой без водолазного костюма, вода непосредственно прилегает к нашему глазу; в водолазном же шлеме (или в каюте «Наутилуса») глаз отделен от воды слоем воздуха (и стекла). Это существенно меняет все дело. Лучи света, выходя из воды и пройдя через стекло, попадают сначала в воздух и лишь отсюда проникают в глаз. Падая из воды на плоскопараллельное стекло под каким-либо углом, лучи, по законам оптики, выходят из стекла, не меняя направления; но далее, при переходе из воздуха в глаз, лучи, конечно, преломляются, – и глаз при этих условиях действует совершенно так же, как и на суше. В этом и кроется разгадка смутившего нас противоречия. Лучшая иллюстрация ее – это то, что мы вполне хорошо видим рыб, плавающих в аквариуме.

Стеклянные чечевицы под водой

Пробовали ли вы делать такой простой опыт: погрузить двояковыпуклое («увеличительное») стекло в воду и рассматривать через него погруженные предметы? Попробуйте, – вас поразит неожиданность: увеличительное стекло в воде почти не увеличивает! Погрузите в воду «уменьшительное» (двояковогнутое) стекло, – и окажется, что, оно почти утратит свойство уменьшать. Если вы проделаете опыт не с водой, а с растительным маслом (например, кедровым), имеющим показатель преломления больший, чем стекло, то двояковыпуклое стекло будет уменьшать предметы, двояковогнутое – увеличивать их!

Вспомните, однако, закон преломления лучей света, – и эти чудеса не будут удивлять вас своей необычайностью. Двояковыпуклая чечевица увеличивает в воздухе потому, что стекло преломляет свет сильнее, нежели окружающий ее воздух. Но между преломляющей способностью стекла и воды разница невелика; поэтому если вы поместите стеклянную чечевицу в воду, то лучи света, переходя из воды в стекло, не испытают большого отклонения. Оттого-то под водой увеличительное стекло гораздо слабее увеличивает, чем в воздухе, а уменьшительное – слабее уменьшает.

Растительное же масло преломляет лучи сильнее, чем стекло, и потому в этой жидкости «увеличительные» стекла уменьшают, а «уменьшительные» увеличивают. Так же действуют под водой и пустые (вернее, воздушные) линзы: вогнутые увеличивают, выпуклые – уменьшают. Очки для ныряния представляют собою именно такие полые линзы (рис. 111).

Рисунок 111. Очки для ныряющих состоят из полых плоско-вогнутых линз. Луч MN, преломляясь, следует по пути MNOP, удаляясь внутри линзы от перпендикуляра падения и приближаясь к нему (т. е, к ОR) вне линзы. Поэтому линза действует как собирательное стекло.

Неопытные купальщики

Неопытные купальщики нередко подвергаются большой опасности только потому, что забывают об одном любопытном следствии закона преломления света: они не знают, что преломление словно поднимает все погруженные в воду предметы выше истинного их положения. Дно пруда, речки, каждого водоема представляется глазу приподнятым почти на третью часть глубины; полагаясь на эту обманчивую мелкость, люди нередко попадают в опасное положение. Особенно важнo знать это детям и вообще людям невысокого роста, для которых ошибка в определении глубины может оказаться роковой.

Причина – преломление световых лучей. Тот же оптический закон, который придает полупогруженной в воду ложке изломанный вид (рис. 112), обусловливает и кажущееся поднятие дна. Вы можете проверить это.

Посадите товарища за стол так, чтобы он не мог видеть дна стоящей перед ним чашки. На дно ее положите монету, которая, разумеется, будет заслонена стенкой чашки от глаз вашего товарища. Теперь попросите товарища не поворачивать головы и налейте в чашку воды. Произойдет нечто неожиданное: монета сделается для вашего гостя видимой! Удалите воду из чашки спринцовкой, – и дно с монетой опять опустится (рис. 113).

Рис. 114 объясняет, как это происходит. Участок дна m кажется наблюдателю (глаз которого – над водой, в точке А) в приподнятом положении: лучи преломляются и, переходя из воды в воздух, вступают в глаз, как показано на рисунке, а глаз видит участок на продолжении этих линий, т. е. над m. Чем наклоннее идут лучи, тем выше поднимается m. Вот почему при рассматривании, например, с лодки ровного дна пруда нам всегда кажется, что оно наиболее глубоко прямо под нами, а кругом – всё мельче и мельче.

Итак, дно пруда кажется нам вогнутым. Наоборот, если бы мы могли со дна пруда смотреть на перекинутый через него мост, он казался бы нам выпуклым (как изображено на рис. 115; о способе получения этой фотографии будет сказано позже). В данном случае лучи переходят из слабо преломляющей среды (воздуха) в сильно преломляющую (воду), поэтому и эффект получается обратный, чем при переходе лучей из воды в воздух. По сходной причине и ряд людей, стоящих, например, возле аквариума, должен казаться рыбам не прямой шеренгой, а дугой, обращенной своей выпуклостью к рыбе. О том, как видят рыбы, или, вернее, как они должны были бы видеть, если бы имели человеческие глаза, мы скоро побеседуем подробнее.

Рисунок 112. Искаженное изображение ложки, опущенной в стакан с водой.

Рисунок 113. Опыт с монетой в чашке.

Рисунок 114. Почему монета в опыте рис 113 кажется приподнявшейся.

Рисунок 115. В таком виде представляется подводному наблюдателю железнодорожный мост, перекинутый через pекy (с фотографии проф. Вуда).

Невидимая булавка

Воткните булавку в плоский пробковый кружок и положите его булавкой вниз на поверхность воды в миске. Если пробка не чересчур широка, то, как бы ни наклоняли вы голову, вам не удастся увидеть булавки – хотя казалось бы, она достаточно длинна, чтобы пробка не заслоняла ее от вас (рис. 116).

Почему же лучи света не доходят от булавки до вашего глаза? Потому что они претерпевают то, что в физике называется «полным внутренним отражением». Напомним, в чем состоит это явление. На рис. 117 можно проследить за путями лучей, переходящих из воды в воздух (вообще из среды более преломляющей в среду менее преломляющую) и обратно. Когда лучи идут из воздуха в воду, то они приближаются к «перпендикуляру падения»; например, луч, падающий на воду под углом b к перпендикуляру к плоскости падения, вступает в нее уже под углом а, который меньше, чем b.

Но что бывает, когда падающий луч, скользя по поверхности воды, падает на водную поверхность почти под прямым углом к перпендикуляру? Он вступает в воду под углом, меньшим чем прямой, а именно под углом всего в 48,5 градусов. Под большим углом к перпендикуляру, чем 48,5 градусов, луч вступить в воду не может; это для воды «предельный» угол. Необходимо уяснить себе эти несложные соотношения, чтобы понять дальнейшие, совершенно неожиданные и чрезвычайно любопытные следствия закона преломления.

Рисунок 116. Опыт с булавкой, невидимой в воде.

Рисунок 117. Разные случаи преломления луча при переходе из воды в воздух. В случае II луч падает под предельным углом к перпендикуляру падения и выходит из воды, скользя вдоль ее поверхности. III изображает случай полного внутреннего отражения.

Мы сейчас узнали, что лучи, падающие на воду под всовозможными углами, сжимаются под водой в довольно тесный конус с углом раствора 48,5 + 48,5 = 97°. Проследим теперь за ходом лучей, идущих обратно – из воды в воздух (рис. 118). По законам оптики, пути будут те же самые, и все лучи, заключенные в упомянутом 97-градусном конусе, выйдут в воздух под различными углами, распределяясь по всему 180-градусному пространству над водой.

Но куда же денется подводный луч, находящийся вне упомянутого конуса? Оказывается, он не выйдет вовсе из-под воды, а отразится целиком от ее поверхности, как от зеркала. Вообще всякий подводный луч, встречающий поверхность воды под углом, большим «предельного» (т. е. большим 48,5 градусов), не преломляется, а отражается: он претерпевает, как говорят физики, «полное внутреннее отражение[61]».

Если бы рыбы изучали физику, то главнейшим отделом оптики было бы для них учение о «внутреннем отражении», так как в их подводном зрении оно играет первостепенную роль.

В связи с особенностями подводного зрения находится, по всей вероятности, то обстоятельство, что многие рыбы имеют серебристую окраску. По мнению зоологов, такая окраска есть результат приспособления рыб к цвету расстилающейся над ними водной поверхности: npи наблюдении снизу поверхность воды, как мы знаем, кажется зеркальной – вследствие «полного внутреннего отражения»; а на таком фоне серебристо-окрашенные рыбы остаются незаметными для охотящихся на них водных хищников.

Рисунок 118. Лучи, исходящие из точки Р под углом к перпендикуляру падения больше предельного (для поды – 48,5 градусов), не выходят в воздух из воды, а целиком отражаются внутрь.


Яков Перельман читать все книги автора по порядку

Яков Перельман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Занимательная физика (книга 2) отзывы

Отзывы читателей о книге Занимательная физика (книга 2), автор: Яков Перельман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.