Профессор Френкель об этом говорил так. Деление ядра капли на две дочерние капли осуществляется не сразу, а путем постепенного вытягивания, при котором оно сначала превращается в вытянутый эллипсоид, затем центральное сечение этого эллипсоида сужается, образуя шейку. Шейка постепенно утоньшается, пока, наконец, не разорвется, после чего процесс деления может считаться законченным. Разумеется, и вытягивание и последующий разрыв происходят в режиме колебаний ядра-капли, во время одного из периодов этих колебаний, когда изменение формы капли оказалось наиболее значительным.
На доске появились элементарные формулы — Френкель «оценивал» атомный вес того элемента, ядро которого должно потерять устойчивость и разделиться на два дочерних. Атомный вес такого элемента оказался близким 100. Оценка озадачивающая, так как если она верна, то все элементы, атомный вес которых больше 100, должны были бы потерять право на существование, а в периодической системе элементов фигурируют более тяжелые элементы, вплоть до урана, атомный вес которого 238. Что- то, видимо, в оценке не учтено. Что же? Френкель уже говорил о том, что, превращаясь в две сферические дочерние капли-ядра, материнское ядро должно постепенно вытягиваться. Это значит, что поверхность, а с ней и поверхностная энергия должны увеличиваться. Следовательно, на пути к процессу деления природой поставлен барьер, который необходимо преодолеть. Величину этого барьера можно вычислить, и во время лекции профессор это сделал. Он показал, что по мере увеличения радиуса материнского ядра-капли этот барьер постепенно снижается и становится практически равным нулю для ядра урана. Вот почему все, что можно примыслить себе за ураном, не должно быть долго жизнеспособным, а менделеевская таблица «стабильных» элементов должна оканчиваться именно ураном.
Вернемся к водопроводному крану. Капелька, формирующаяся на его конце, подвержена действию силы тяжести, которая деформирует каплю. Действие ее подобно действию электростатических сил отталкивания между двумя половинками заряженного ядра. Таким образом, если усматривать аналогию между развалом ядра и отрывом капли от кончика водопроводного крана, надо примыслить себе, что в кране остается капелька, подобная той, которая от него оторвалась.
После лекции профессора Френкеля прошло более тридцати лет. Капельная модель ядра уточнена, улучшена, а глубокая аналогия, навеянная видом капли на кончике крана или, быть может, дождевой каплей, в науке осталась прочно. Эта аналогия помогла решить задачи общечеловеческой значимости.
Образ капли близок творчеству Френкеля, к каплям он обращался много раз в разные годы и по разным поводам.
Вначале совсем очевидное утверждение: если в силу каких- либо обстоятельств капля приобрела несферическую форму, это означает, что ее поверхность увеличилась по сравнению с поверхностью сферы и, следовательно, увеличилась и ее поверхностная энергия. Или: если в силу каких-либо обстоятельств несферическая капля вдруг приобретает сферическую форму, вследствие уменьшения поверхности должна выделиться избыточная энергия.
Допустим, что нам удалось осуществить преобразование формы капли от несферической к сферической, удалось предоставить возможность избыточной поверхностной энергии освободиться, выделиться. Кстати, эта энергия может оказаться совсем немалой. Ее очень легко вычислить, если задаться объемом капли и ее начальной формой. Вот пример, который дальше нам пригодится. Крупная капля ртути весом 20 г на стеклянной пластинке имеет форму лепешки, близкую к форме цилиндра, радиус которого 1,2 см, а высота 0,35 см. Если эта капля превратится в сферу, то при этом освобождается энергия W= 1060 эрг.
Куда же эта энергия денется, на что она способна, что может произойти после того, как капле эта энергия в качестве поверхностной станет не нужна? Какие процессы могут сыграть роль «стоков» выделившейся энергии? Очевидно, некоторая часть энергии должна будет израсходоваться на то, чтобы осуществить перемещение вещества капли, в результате которого капля станет сферической. Дело в том, что жидкость, из которой капля состоит, обладает некоторой вязкостью, и поэтому всякое изменение формы капли связано с необходимостью преодолеть сопротивление вязкой жидкости ее деформированию, т. е. с необходимостью совершить некоторую работу против сил трения. Кроме того, часть освободившейся энергии может израсходоваться на нагрев капли. Можно ожидать, что, приобретая сферическую форму, капля будет сама себя подогревать. Кроме того, может нагреваться и пространство, окружающее каплю. В этом случае сфероидизирующаяся капля будет играть роль своеобразной печки, отапливающей пространство вокруг себя.
Кроме названных «стоков» для избыточной энергии можно указать еще один — в основном о нем далее и будет разговор. Если приплюснутая несферическая капелька лежит на твердой пластинке и если почему-либо она должна преобразовать свою форму из несферической в сферическую, можно ожидать, что в момент преобразования она оттолкнется от пластинки и подскочит вверх, как может подскочить каждый из нас, оттолкнувшись от земли. Для совершения такого скачка капля, естественно, нуждается в энергии, которая может быть частью энергии, выделившейся при сокращении поверхности капли.
Как видите, стоков энергии много, и, очевидно, все «работающие», но скорость их действия и «поглощательная способность», конечно же, различны. Совершенно ясно, что капля не подпрыгнет, если изменение ее формы будет происходить медленно. В этом случае принципиально возможный расход энергии на скачок не произойдет. И на борьбу с сопротивлением жидкости изменению ее формы тоже будет расходоваться мало энергии, потому что этот расход, как оказывается, тем больше, чем быстрее должно произойти изменение формы. При медленной сфероидизации капли выделяющаяся энергия была бы израсходована в основном на ее нагрев и нагрев окружающего пространства. Увидеть, как капля подпрыгнет, можно лишь при условии, что преобразование ее формы будет происходить быстро. Если, присев на корточки, мы будем медленно распрямляться, прыжок не получится: чтобы подпрыгнуть, надо, быстро распрямляясь, оттолкнуться от земли. Но что значит «быстро» применительно к капле, которая изменяет свою форму? Капле, чтобы подпрыгнуть, надо побороть силу тяжести, препятствующую прыжку.
На каплю в момент ее прыжка действуют две силы.
Итак, возникает задача, которую можно сформулировать следующим образом. Допустим, что вся энергия, которая выделяется в процессе сфероидизации капли, должна быть израсходована только на ее подпрыгивание. Пусть другие стоки энергии каким-то образом запрещены. Спрашивается, при какой длительности процесса преобразования формы капли в сферическую капля оторвется от твердой пластинки, на которой она лежит? Решить такую задачу просто. Это могут сделать восьмиклассники в начале учебного года, узнав, что кинетическая энергия тела равна половине произведения его массы на квадрат скоро-
При такой оценке времени кажется, что надежда наблюдать подпрыгивающую каплю становится иллюзорной. Но, если каплю на подложке перевести в состояние невесомости или близкое к нему, произойдет то, к чему мы стремимся: потеряв вес, капля приобретает сферическую форму и на нее перестает действовать сила тяжести, мешающая оторваться от пластинки, на которой она лежит. В состоянии невесомости величина g, которая стоит в знаменателе последней формулы, обращается в нуль, а это значит, что т становится равным бесконечности, и капля подскочит даже при сколь угодно медленном преобразовании ее формы. При малейшем изменении формы она оторвется от пластинки и с некоторой скоростью начнет двигаться от нее. Ситуация совершенно аналогична той, в которую попадают космонавты во время полета, когда им приходится специально заботиться, чтобы случайное движение не вынудило их покинуть рабочее место.
Подпрыгнувшая в невесомости капля, колеблясь, свободно летит вверх
Вот теперь можно рассказать о великолепном эксперименте, который в 1970 г. поставили советские физики И. М. Кирко, Е. П. Добычин и В. И. Попов. Их эксперимент состоял в следующем. Тяжелый контейнер, в котором располагались прозрачный сосуд с двадцатиграммовой каплей ртути, залитой раствором соляной кислоты, и автоматически работающая кинокамера, сбрасывался с высоты 20 м. Во время свободного полета, длившегося 2 сек., все содержимое контейнера было практически в состоянии невесомости. Кинокамера зафиксировала происходящее в полете: ртутная лепешка, превращаясь в сферу, подпрыгнула и полетела прочь от дна прозрачной кюветы со скоростью 8,7 см/сек. Это главное наблюдение, сделанное камерой. Проверим, как оно согласуется с величиной энергии, которая должна выделиться при сфероидизации капли. Именно для этой проверки в начале очерка была названа энергия, которая выделяется при сфероидизации ртутной капли весом 20 г. Получив скорость 8,7 см/сек., она унесет с собой энергию Wk= mν2/2= 752 эрг,