MyBooks.club
Все категории

Ричард Фейнман - 7. Физика сплошных сред

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Ричард Фейнман - 7. Физика сплошных сред. Жанр: Физика издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
7. Физика сплошных сред
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
9 сентябрь 2019
Количество просмотров:
125
Читать онлайн
Ричард Фейнман - 7. Физика сплошных сред

Ричард Фейнман - 7. Физика сплошных сред краткое содержание

Ричард Фейнман - 7. Физика сплошных сред - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

7. Физика сплошных сред читать онлайн бесплатно

7. Физика сплошных сред - читать книгу онлайн бесплатно, автор Ричард Фейнман

Опишем теперь некоторые эксперименты, отнюдь не термоди­намического характера, которые показывают, что мы все же в каком-то смысле правы в нашей интерпретации магнетизма. Когда материал при достаточно низких температурах намагни­чен до насыщения, то М очень близка к Мнас, т. е. почти все спины, равно как и магнитные моменты, параллельны. Это можно проверить экспериментально. Предположим, что мы подвесили магнитную па­лочку на тонкой струне, а затем окружили ее катушкой, так что мо­жем менять магнитное поле, не притрагиваясь к магниту и не прикладывая к нему никакого момента сил. Это очень трудный эксперимент, ибо магнитные силы столь велики, что любая нерегулярность, любой перекос или несо­вершенство в железе могут дать случайный момент. Однако такой эксперимент был выполнен со всей необходимой аккурат­ностью и роль случайных моментов была сведена до минимума. С помощью магнитного поля катушки, которая окружает па­лочку, мы сразу можем перевернуть все магнитные моменты. Когда мы это проделаем, то заодно «сверху вниз» перевернутся и все моменты количества движения, связанные со спином (фиг. 37.3).

Фиг. 37.3. При перемагничивании железного бруска он приобретает некоторую угловую скорость.

Но поскольку момент количества движения должен сохраняться, то, когда все спины перевернулись, момент количе­ства движения палочки должен измениться в противоположную сторону. Весь магнит должен начать вращаться. Это произошло на самом деле. Когда опыт был проделан, то было обнаружено слабое вращение магнита. Мы можем измерить полный момент количества движения, переданный всему магниту, который про­сто равен произведению N на h и на изменение момента количе­ства движения каждого спина. Оказалось, что измеренное этим способом отношение момента количества движения к магнит­ному с 10%-ной точностью совпадает с нашими вычислениями. На самом деле в наших вычислениях мы исходили из того, что атомный магнетизм целиком обязан электронным спинам, од­нако в большинстве материалов есть еще и орбитальное движе­ние. Орбитальное движение связано с решеткой, но она дает в магнетизм вклад не более нескольких процентов. Действительно, если взять Mнас=Nm и для плотности железа взять значение 7,9, а для m—момент электрона, связанный с его спином, то для магнитного поля получим насыщение около 20 000 гс. Однако опыт показывает, что на самом деле оно имеет значение вблизи 21500 гс. Ошибка в 5 или 10% возникает как раз из-за того, что мы пренебрегли вкладами орбитальных моментов. Таким образом, небольшое расхождение с гиромагнитными измерения­ми совершенно понятно.

§ 3. Петля гистерезиса

Из нашего теоретического анализа мы заключили, что маг­нитные материалы ниже некоторой температуры должны ста­новиться спонтанно намагниченными, так что все магнитики в них должны смотреть в одном и том же направлении. Однако для обычного куска ненамагниченного железа это, как мы знаем, неверно. Почему железо не намагничивается все целиком? С помощью фиг. 37.4 я могу объяснить вам это. Допустим, что все железо было бы одним большим кристаллом такой формы, как показано на фиг. 37.4, а, и этот кристалл целиком намаг­нитился бы в одном направлении.

Фиг. 37.4. Образование доме­нов в монокристалле железа.

При этом создалось бы зна­чительное внешнее магнитное поле, содержащее в себе огромную энергию. Мы можем уменьшить эту энергию поля, если распо­ложим атомы так, чтобы одна часть кубика была намагничена вверх, а другая — вниз, как показано на фиг. 37.4, б. При этом, разумеется, поле вне железа будет занимать меньший объем и будет нести в себе меньше энергии.

Постойте, постойте! В слое между двумя областями рядом с электронами со спином, направленным вверх, сидят электро­ны со спином, направленным вниз. Но ферромагнетизм появ­ляется только в тех материалах, для которых энергия умень­шается, когда спины параллельны, а не противоположны. Так что вдоль пунктирной линии на фиг. 37.4, б возникает некоторая добавочная энергия. Эта энергия иногда называется энергией стенки. Область, имеющая только одно направление намагниченности, называется доменом. На каждой единице площади разделяющей по­верхности между двумя доменами у стенки доме­на, с противоположных сторон которой у нас расположены атомы, чьи магнитные моменты направлены противоположно, сосредоточена энергия. Конечно, нельзя говорить строго, что на границе моменты двух сосед­них атомов в точности противоположны, природа-то сделала этот переход более постепенным. Но сейчас нам не стоит ин­тересоваться такими тонкими деталями.

Главный же вопрос теперь заключается вот в чем: выгодны такие стенки или нет? Ответ на него зависит от размеров доме­нов. Предположим, что мы увеличили размеры так, что все стало вдвое больше. При этом объем внешнего пространства, заполненного магнитным полем данной силы, станет в восемь раз больше, а энергия магнитного поля, которая пропорцио­нальна объему, тоже возрастет в восемь раз. Но площадь границы между двумя доменами, на которой сосредоточена энергия стенки, возрастет только в четыре раза. Следователь­но, если кусок железа достаточно велик, ему выгодно расще­питься на некое число доменов. Вот почему лишь очень малень­кие кристаллы могут состоять только из одного домена. Любой большой объект, размер которого больше приблизительно од­ной тысячной миллиметра, будет иметь по крайней мере одну междоменную стенку, а обычный «сантиметровый» объект расщепляется, как это показано на рисунке, на множество до­менов. Расщепление на домены будет происходить до тех пор, пока энергия, необходимая на установление еще одной допол­нительной стенки, не сравняется с уменьшением энергии маг­нитного поля вне кристалла.

Природа же нашла еще один способ понижения энергии. Полю нет никакой необходимости выходить наружу, если, как это показано на фиг. 37.4, г, взять маленькие треугольные области с направленной в сторону намагниченностью. При та­ком расположении, как на фиг. 37.4, г, внешнее поле полностью отсутствует, а площадь доменных стенок лишь незначительно больше.

Но это приводит к новой проблеме. Оказывается, что если намагнитить отдельный кристалл железа, то он изменяет свою длину в направлении намагничивания; так что «идеальный» куб с намагниченностью «вверх» уже не будет безупречным ку­бом. Его «вертикальный» размер будет отличаться от «горизон­тального».Этот эффект называется магнитострикцией. В ре­зультате таких геометрических изменений небольшой треугольный кусочек, показанный на фиг. 37.4, г, не сможет больше, так сказать, «умещаться» в отведенном ему пространстве: в одном направлении кристалл становится слишком длинным, а в другом — слишком коротким. Фактически-то он, конечно, умещается, но только немного сплющивается, что приводит к некоторым механическим напряжениям. Отсюда возникает и дополнительная энергия. Полный баланс вкладов в энергию и определяет сложный вид расположения доменов в куске нена­магниченного железа.

А что получится, если мы приложим внешнее магнитное по­ле? В качестве простого примера рассмотрим кристалл, домены которого показаны на фиг. 37.4, д. Если мы приложим магнит­ное поле, направленное вверх, то как будет происходить намагничивание кристалла? Прежде всего средняя доменная стен­ка может передвинуться в сторону (направо) и уменьшить энер­гию. Она перемещается таким образом, чтобы область направления «вверх» стала больше области направления «вниз», Элементарных магнитиков, направленных по полю, становится больше, а это приводит к понижению энергии. Таким образом, в куске железа в слабых магнитных полях с самого начала на­магничивания доменная стенка начнет двигаться и «съедать» области, намагниченные противоположно полю. По мере того как поле продолжает увеличиваться, весь кристалл постепенно превращается в один большой домен, в котором внешнее поле помогает сохранять направление «вверх». В сильном магнит­ном поле кристаллы намагничиваются в одну сторону как раз потому, что их энергия в приложенном поле уменьшается. Внешнее магнитное поле кристаллов теперь уже не так сущест­венно.

А что если геометрия кристалла не так проста? Что если какая-то ось кристалла и его спонтанная намагниченность нап­равлены в одну сторону, а мы прилагаем поле, направленное в другую, скажем под углом 45°? Можно думать, что домены по­вернутся так, чтобы их намагниченность стала параллельной полю, а затем они, как и прежде, смогут слиться в один домен. Но сделать это для железа нелегко, ибо энергия, необходимая для намагничивания кристалла, зависит от направления намаг­ничивающего поля относительно кристаллической оси. Намаг­нитить железо в направлении, параллельном кристаллической оси, относительно легко, но для того чтобы намагнитить его в каком-то другом направлении, скажем под углом 45° к на­правлению оси, энергии требуется больше. Следовательно, если в таком направлении приложить магнитное поле, то сначала происходит рост доменов, намагниченных в одном из избран­ных направлений, близких к направлению приложенного поля, пока в эту сторону не будет направлена намагниченность всех областей. Затем при гораздо больших полях общая намагниченность постепенно поворачивается к направ­лению поля, как это показано на фиг. 37.5.


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


7. Физика сплошных сред отзывы

Отзывы читателей о книге 7. Физика сплошных сред, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.